On homogenization of the Lavrent’ev-Bitsadze equation in a partially perforated domain with the third boundary condition on the boundary of the cavities. Subcritical, critical and supercritical cases
- Авторлар: Chechkin G.A.1,2
-
Мекемелер:
- Lomonosov Moscow State University
- Ufa Science Center of the Russian Academy of Sciences
- Шығарылым: Том 71, № 1 (2025): Nonlocal and nonlinear problems
- Беттер: 194-212
- Бөлім: Articles
- URL: https://journals.rcsi.science/2413-3639/article/view/327848
- DOI: https://doi.org/10.22363/2413-3639-2025-71-1-194-212
- EDN: https://elibrary.ru/VPSNGM
- ID: 327848
Дәйексөз келтіру
Толық мәтін
Аннотация
For the Lavrent’ev—Bitsadze equation in a partially perforated model domain with a characteristic size of microinhomogeneities \(\varepsilon,\) we consider the problem with the third-kind boundary condition on the boundary of the cavities (the Fourier condition), which has a small parameter \(\varepsilon^\alpha\) as a multiplier in the coefficients, and the Dirichlet condition on the outer part of the boundary. For this problem, we construct a homogenized problem and prove the convergence of the solutions of the original problem to the solution of the homogenized problem in three cases. The subcritical case with \(\alpha>1\) is characterized by the fact that dissipation at the boundary of the cavities is negligibly small, in the critical case with \(\alpha=1\) a potential appears in the equation due to dissipation, and in the supercritical case with \(\alpha<1\) the dissipation plays the major role, it leads to degeneracy of the solution of the entire problem.
Негізгі сөздер
Авторлар туралы
G. Chechkin
Lomonosov Moscow State University; Ufa Science Center of the Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: chechkin@mech.math.msu.su
Moscow, Russia; Ufa, Russia
Әдебиет тізімі
- Бекмаганбетов К.А., Толеубай А.М., Чечкин Г.А. Об аттракторах системы уравнений Навье- Стокса в двумерной пористой среде// Пробл. мат. анализа.-2022.- 115.-С. 15-28.- DOI: 10.1007/ s10958-022-05814-y.
- Беляев А.Г., Пятницкий А.Л., Чечкин Г.А. Асимптотическое поведение решения краевой задачи в перфорированной области с осциллирующей границей// Сиб. мат. ж. -1998.- 39, № 4.- С. 730-754.
- Беляев А.Г., Пятницкий А.Л., Чечкин Г.А. Усреднение в перфорированной области с осциллирующим третьим краевым условием// Мат. сб.- 2001.- 192, № 7.- С. 3-20.
- Егер В., Олейник О.А., Шамаев А.С. О задаче усреднения для уравнения Лапласа в частично перфорированной области// Докл. РАН. - 1993.- 333, № 4. -С. 424-427.
- Егер В., Олейник О.А., Шамаев А.С. Об асимптотике решений краевой задачи для уравнения Лапласа в частично перфорированной области с краевыми условиями третьего рода на границах полостей// Тр. Моск. мат. об-ва.-1997.-58.-С. 187-223.
- Кондратьев В.А. Краевые задачи для эллиптических уравнений в областях с коническими и угловыми точками// Тр. Моск. мат. об-ва.-1967.-16.-С. 209-292.
- Кондратьев В.А., Чечкин Г.А. Усреднение уравнения Лаврентьева-Бицадзе в полуперфорированной области// Дифф. уравн.- 2002.-38, № 10.-С. 1390-1396.
- Кондратьев В.А., Чечкин Г.А. Об асимптотике решений уравнения Лаврентьева-Бицадзе в полуперфорированной области// Дифф. уравн.-2003.- 39, № 5.- С. 645-655.
- Моисеев Е.И. Уравнения смешанного типа со спектральным параметром.-М.: Изд-во Моск. унив., 1988.
- Назаров С.А., Пламеневский Б.А. Эллиптические задачи в областях с кусочно гладкой границей.- М.: Наука, 1991.
- Олейник О.А. Лекции об уравнениях с частными производными: учебник.- М.: Изд-во Моск. унив., 2024.
- Олейник О.А., Шамаев А.С. Об усреднении решений краевой задачи для уравнения Лапласа в частично перфорированной области с условием Дирихле на границе полостей// Докл. РАН. - 1994.- 337, № 2.-С. 168-171.
- Олейник О.А., Шапошникова Т.А. О задаче усреднения в частично перфорированной области со смешанными краевыми условиями на границе полостей// Дифф. уравн.- 1995.- 31, № 7.-С. 1140-1150.
- Bekmaganbetov K.A., Chechkin G.A., Chepyzhov V.V. «Strange term» in homogenization of attractors of reaction-diffusion equation in perforated domain// Chaos, Solitons Fractals.- 2020.- 140.- 110208.- doi: 10.1016/j.chaos.2020.110208.
- Bekmaganbetov K.A., Chechkin G.A., Chepyzhov V.V. Application of Fatou’s lemma for strong homogenization of attractors to reaction-diffusion systems with rapidly oscillating coefficients in orthotropic media with periodic obstacles// Mathematics.- 2023.- 11, № 6.-1448.-doi: 10.3390/math11061448.
- Bekmaganbetov K.A., Chechkin G.A., Chepyzhov V.V. Homogenization of attractors to reaction-diffusion system in a medium with random obstacles// Discrete Contin. Dyn. Syst.- 2024.- 44, № 11.-С. 3474- 3490.-doi: 10.3934/dcds.2024066.
- Bekmaganbetov K.A., Chechkin G.A., Chepyzhov V.V., Tolemis A.A. Homogenization of attractors to Ginzburg-Landau equations in media with locally periodic obstacles: critical case// Bull. Karaganda Univ. Math. Ser.-2023.- 3.-С. 11-27.-doi: 10.31489/2023M3/11-27.
- Bekmaganbetov K.A., Chechkin G.A., Chepyzhov V.V., Tolemis A.A. Attractors of Ginzburg-Landau equations with oscillating terms in porous media. Homogenization procedure// Appl. Anal. - 2024.- 103, № 1. -С. 29-44.-doi: 10.1080/00036811.2023.2173182.
- Bekmaganbetov K.A., Chechkin G.A., Chepyzhov V.V., Tolemis A.A. Homogenization of attractors to Ginzburg-Landau equations in media with locally periodic obstacles: sub- and supercritical cases// Bull. Karaganda Univ. Math. Ser.- 2024.- 2.- С. 40-56.- doi: 10.31489/2024M2/40-56.
- Bekmaganbetov K.A., Chechkin G.A., Toleubay A.M. Attractors of 2D Navier-Stokes system of equations in a locally periodic porous medium// Bull. Karaganda Univ. Math. Ser. -2022.- 3.- С. 35-50.-doi: 10.31489/2022M3/35-50.
- Chechkin G.A., Friedman A., Piatnitski A.L. The boundary value problem in domains with very rapidly oscillating boundary// J. Math. Anal. Appl. - 1999.- 231, № 1.- С. 213-234.
- Chechkin G.A., Piatnitski A.L. Homogenization of boundary-value problem in a locally periodic perforated domain// Appl. Anal. -1999.- 71, № 1-4.-С. 215-235.
- Cioranescu D., Donato P. On a Robin problem in perforated domains// В сб.: «Homogenization and Applications to Material Sciences». -Tokyo: Gakk¯otosho, 1997.-С. 123-136.
- Cioranescu D., Saint Jean Paulin J. Truss structures, Fourier conditions and eigenvalue problems// В сб.: «Boundary Variation».-Berlin-New York: Springer, 1992.-С. 6-12.
- Ene H.I., Sanchez-Palencia E. Equations et ph´enom`enes de surface por l’´ecoulement dans un mod`ele de milieu poreux// J. M´ecan.- 1975.-14.-С. 73-108.
- Ja¨ger W., Mikeli´c A. On the flow conditions at the boundary between a porous medium and an impermeable solid// В сб.: «Progress in partial differential equations».-London: Longman Sci. Tech., 1994.-С. 145- 161.
- Ja¨ger W., Mikeli´c A. On the boundary conditions at the contact interface between a porous medium and a free fluid// Ann. Sc. Norm. Super. Pisa Cl. Sci. (4). - 1996.- 23, № 3.-С. 403-465.
- Ja¨ger W., Mikeli´c A. Homogenization of the Laplace equation in a partially perforated domain// В сб.: «Homogenization: In Memory of Serguei Kozlov».- River Edge: World Sci. Publ., 1999.-С. 259-284.
- Larson R.E., Higdon J.J.L. Microscopic flow near the surface of two-dimensional porous media. Part I- axial flow// J. Fluid Mech.- 1986.- 178.- С. 449-472.
- Larson R.E., Higdon J.J.L. Microscopic flow near the surface of two-dimensional porous media. Part II - traverse flow// J. Fluid Mech.- 1986.- 166.-С. 119-136.
- Lions J.-L., Magenes E. Probl`emes aux limites non homog`enes et applications. Vol. I. -Paris: Dunod, 1968.
- Osher S. Boundary value problems for equations of mixed type I. The Lavrent’ev-Bitsadze model// Commun. Part. Differ. Equ. -1977.-2, № 5.- С. 499-547.
- Saffman P.G. On the boundary conditions at the interface of a porous medium// Stud. Appl. Math.- 1971.-1.- С. 93-101.
Қосымша файлдар
