Applications of the s-harmonic extension to the study of singularities of Emden’s equations

Cover Page

Cite item

Full Text

Abstract

We use the Caffarelli–Silvestre extension to \( \mathrm{R}_+\times\mathrm{R}^N \) to study the isolated singularities of functions satisfying the semilinear fractional equation \( (-\Delta)^sv+\epsilon v^p=0 \) in a punctured domain of \( \mathrm{R}^N \) where \(\epsilon=\pm 1\), \(0 and \(p>1\). We emphasise the obtention of a priori estimates and analyse the set of self-similar solutions. We provide a complete description of the possible behaviour of solutions near a singularity.

About the authors

Laurent Veron

Université de Tours

Author for correspondence.
Email: veronl@univ-tours.fr
Тур, Франция

References

  1. Aviles P. Local behavior of solutions of some elliptic equations// Commun. Math. Phys. -1987.- 108.- C. 177-192.
  2. Bidaut-V´eron M.F., V´eron L. Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations// Invent. Math. - 1991.- 106.-C. 489-539.
  3. Boukarabila O., V´eron L. Nonlinear boundary value problems relative to harmonic functions// Nonlinear Anal. -2020.-201.- 112090.
  4. Caffarelli L., Gidas B., Spruck J. Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth// Commun. Pure Appl. Math.- 1989.- 42.- C. 271-297.
  5. Caffarelli L., Jin T., Sire Y., Xiong J. Local analysis of solutions of fractional semi-linear elliptic equations with isolated singularities// Arch. Ration. Mech. Anal. -2014.- 213.- C. 245-268.
  6. Caffarelli L., Silvestre L. An extension problem related to the fractional Laplacian// Commun. Part. Differ. Equ. - 2007.- 32.- C. 1245-1260.
  7. Chandrasekhar S. Introduction to Stellar Structure.- Chicago: Univ. Chicago, 1939.
  8. Chen X., Matano H., V´eron L. Anisotropic singularities of solutions of nonlinear elliptic equations in R2// J. Funct. Anal.- 1989.-83.-C. 50-97.
  9. Chen H., V´eron L. Semilinear fractional elliptic equations involving measures// J. Differ. Equ. - 2014.- 257.- C. 1457-1486.
  10. Chen H., V´eron L. Weakly and strongly singular solutions of semilinear fractional elliptic equations// Asymp. Anal.- 2014.- 88.-C. 165-184.
  11. Chen H., V´eron L. Singularities of fractional Emden’s equations via Caffarelli-Silvestre extension// J. Differ. Equ. -2023.-363.- C. 472-530.
  12. Chen H., Zhou F., Personal communication (2023).
  13. Fowler R.H. Further studies on Emden’s and similar differential equations// Q. J. Math. -1931.- 2.- C. 259-288.
  14. Gidas B., Ni W., Nirenberg L. Symmetry and related properties via the maximum principle// Commun. Math. Phys.- 1979.- 68.-C. 209-243.
  15. Gidas B., Spruck J. Global and local behaviour of positive solutions of nonlinear elliptic equations// Commun. Pure Appl. Math. - 1981.- 34.- C. 525-598.
  16. Hille E. Some aspects of the Thomas-Fermi equation// J. Anal. Math. -1970.-23.-C. 147-170.
  17. Obata M. The conjectures on conformal transformations of Riemannian manifolds// J. Diff. Geom.- 1971.-6.- C. 247-258.
  18. Ratto A., Rigoli M., V´eron L. Scalar curvature and conformal deformation of hyperbolic space// J. Funct. Anal. -1994.-121.- C. 15-77.
  19. Simon L. Isolated singularities of extrema of geometric variational problems// В сб.: «Harmonic Mappings and Minimal Immersions», Springer, Berlin-Heidelberg-New-York, 1985.-С. 206-277.
  20. Sommerfeld A. Asymptotische integration der differential-gleichung des Thomas-Fermischen atoms// Z. Phys.-1932.- 78.- C. 283-308.
  21. Stein E. Singular Integrals and Differentiability of Functions.- Princeton: Princeton Univ. Press, 1971.
  22. V´eron L. Singular solutions of some nonlinear elliptic equations// Nonlinear Anal. -1981.-5. -C. 225- 242.
  23. Wei J., Wu K. Local behavior of solutions to a fractional equation with isolated singularity and critical Serrin exponent// Discrete Contin. Dyn. Syst. -2022.- 42.-C. 4031-4050.
  24. Yang H., Zou W. On isolated singularities of fractional semi-linear elliptic equations// Ann. Henri Poincar´e.- 2021.- 38.-C. 403-420.
  25. Yang H., Zou W. Sharp blow up estimates and precise asymptotic behavior of singular positive solutions to fractional Hardy-H´enon equations// J. Differ. Equ. - 2021.- 278.-C. 393-429.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).