Splines, biharmonic operator and approximate eigenvalue
- Autores: Ben-Artzi M.1
-
Afiliações:
- The Hebrew University
- Edição: Volume 71, Nº 1 (2025): Nonlocal and nonlinear problems
- Páginas: 33-54
- Seção: Articles
- URL: https://journals.rcsi.science/2413-3639/article/view/327838
- DOI: https://doi.org/10.22363/2413-3639-2025-71-1-33-54
- EDN: https://elibrary.ru/TPUIIY
- ID: 327838
Citar
Texto integral
Resumo
The biharmonic operator plays a central role in a wide array of physical models, such as elasticity theory and the streamfunction formulation of the Navier–Stokes equations. Its spectral theory has been extensively studied. In particular the one-dimensional case (over an interval) serves as the basic model of a high order Sturm-Liouville problem. The need for corresponding numerical simulations has led to numerous works. This review focuses on a discrete biharmonic calculus. The primary object of this calculus is a high-order compact discrete biharmonic operator (DBO). The DBO is constructed in terms of the discrete Hermitian derivative. The surprising strong connection between cubic spline functions (on an interval) and the DBO is recalled. In particular the kernel of the inverse of the discrete operator is (up to scaling) equal to the grid evaluation of the kernel of \( \Big[\Big(\frac{d}{dx}\Big)^4\Big]^{-1}. \) This fact entails the conclusion that the eigenvalues of the DBO converge (at an “optimal” \(O(h^4)\) rate) to the continuous ones. Another consequence is the validity of a comparison principle. It is well known that there is no maximum principle for the fourth-order equation. However, a positivity result is recalled, both for the continuous and the discrete biharmonic equation, claiming that in both cases the kernels are order preserving.
Palavras-chave
Sobre autores
Matania Ben-Artzi
The Hebrew University
Autor responsável pela correspondência
Email: mbartzi@math.huji.ac.il
Jerusalem, Israel
Bibliografia
- Ahlberg J.H., Nilson E.N., Walsh J.L. The Theory of Splines and Their Applications. -New York-London: Academic Press, 1967.
- Andrew A.L., Paine J.W. Correction of finite element estimates for Sturm-Liouville eigenvalues// Numer. Math. -1986.-50.-C. 205-215.
- Babu˘ska I., Osborn J. Eigenvalue problems// В сб.: «Handbook of Numerical Analysis, Vol. II». - Amsterdam, etc.: Elsevier, 1991.- С. 641-787.
- Ben-Artzi M., Croisille J.-P., Fishelov D. Navier-Stokes Equations in Planar Domains.-London : Imperial College Press, 2013.
- Ben-Artzi M., Croisille J.-P., Fishelov D., Katzir R. Discrete fourth-order Sturm-Liouville problems// IMA J. Numer. Anal. -2018.-38.-C. 1485-1522.
- Ben-Artzi M., Katriel G. Spline functions, the biharmonic operator and approximate eigenvalues// Numer. Mathematik.- 2019.- 141.- C. 839-879.
- Boumenir A. Sampling for the fourth-order Sturm-Liouville differential operator// J. Math. Anal. Appl. - 2003.-278.- C. 542-550.
- Caudill Jr. L.F., Perry P.A., Schueller A.W. Isospectral sets for fourth-order ordinary differential operators// SIAM J. Math. Anal.- 1998.- 29.-C. 935-966.
- Chawla M.M. A new fourth-order finite-difference method for computing eigenvalues of fourth-order twopoint boundary-value problems// IMA J. Numer. Anal.- 1983.- 3.-C. 291-293.
- Davies E.B. Spectral Theory and Differential Operators.-Cambridge: Cambridge University Press, 1995.
- C. de Boor A Practical Guide to Splines-Revised Edition. -New York: Springer, 2001.
- de Boor C., Swartz B. Collocation approximation to eigenvalues of an ordinary differential equation: The principle of the thing// Math. Comp. -1980.- 35.- C. 679-694.
- Evans L.C. Partial Differential Equations.-Providence: Am. Math. Soc., 1998.
- Everitt W.N. The Sturm-Liouville problem for fourth-order differential equations// Q. J. Math.- 1957.- 8.- C. 146-160.
- Fishelov D., Ben-Artzi M., Croisille J.-P. Recent advances in the study of a fourth-order compact scheme for the one-dimensional biharmonic equation// J. Sci. Comput. -2012.- 53.-C. 55-79.
- Grunau H.-C., Robert F. Positivity and almost positivity of biharmonic Green’s functions under Dirichlet boundary conditions// Arch. Ration. Mech. Anal.- 2010.- 196.-C. 865-898.
- Kato T. Perturbation Theory for Linear Operators.-New York: Springer, 1980.
- Kato T. Variation of discrete spectra// Commun. Math. Phys.- 1987.- 111.-C. 501-504.
- Lou Z.M., Bialecki B., Fairweather G. Orthogonal spline collocation methods for biharmonic problems// Numer. Math.- 1998.- 80.-C. 267-303.
- Markus A.S. The eigen- and singular values of the sum and product of linear operators// Russ. Math. Surv.- 1964.- 19.-C. 91-120.
- Munk W.H. On the wind-driven ocean circulation// J. Meteorol.- 1950.- 7.-C. 80-93.
- Pipher J., Verchota G. A maximum principle for biharmonic functions in Lipschitz and C1 domains// Comment. Math. Helv. -1993.-68.- C. 384-414.
- Prenter P.M. Splines and Variational Methods. -New York: Wiley, 1975.
- Rattana A., B¨ockmann C. Matrix methods for computing eigenvalues of Sturm-Liouville problems of order four// J. Comp. Applied Math. -2013.- 249.-C. 144-156.
- Schro¨der J. On linear differential inequalities// J. Math. Anal. Appl. - 1968.- 22.- C. 188-216.
- Spence A. On the convergence of the Nystro¨m method for the integral equation eigenvalue problem// Numer. Math.- 1975.- 25.-C. 57-66.
Arquivos suplementares
