Diffusion of quantum states generated by a classical random walk
- Authors: Orlov Y.N.1, Sakbaev V.Z.1
-
Affiliations:
- Keldysh Institute of Applied Mathematics of the RAS
- Issue: Vol 71, No 2 (2025): Modern Methods of Theory of Boundary Value Problems. Pontryagin Readings — XXXV
- Pages: 275-286
- Section: Articles
- URL: https://journals.rcsi.science/2413-3639/article/view/327832
- DOI: https://doi.org/10.22363/2413-3639-2025-71-2-275-286
- EDN: https://elibrary.ru/NEHHXZ
- ID: 327832
Cite item
Full Text
Abstract
We investigate a model that associates random walks in a finite-dimensional Euclidean coordinate space of a classical system with random quantum walks, i.e. random transformations of the set of states of a quantum system arising from quantization of a classical system. As is known, the convolution semigroup of Gaussian measures on a coordinate space admits a representation by a semigroup of self-adjoint contractions in the space of square-integrable functions described by the heat equation. We obtain a representation of the convolution semigroup of Gaussian measures on a coordinate space by a quantum dynamic semigroup in the space of nuclear operators. We give a description of the quantum dynamic semigroup by solutions of the Cauchy problem for a degenerate diffusion equation. We establish the generalized convergence in distribution of a sequence of quantum random walks to an operator-valued random process with values in the Abelian algebra of shift operators by a vector with a normal distribution.
About the authors
Yu. N. Orlov
Keldysh Institute of Applied Mathematics of the RAS
Author for correspondence.
Email: ov3159f@yandex.ru
Moscow, Russia
V. Zh. Sakbaev
Keldysh Institute of Applied Mathematics of the RAS
Email: fumi2003@mail.ru
Moscow, Russia
References
- Амосов Г. Г. О различных функциональных представлениях пространства операторов Шварца// Итоги науки и техн. Соврем. мат. и ее прил. - 2018. - 151. - С. 3-9.
- Амосов Г. Г., Бикчентаев А. М., Сакбаев В. Ж. О крайних точках множеств в пространствах операторов и пространствах состояний// Тр. МИАН. - 2024. - 324. - С. 10-23.
- Амосов Г. Г., Манько В. И. Эволюция вероятностных мер, связанных с квантовыми системами// Теор. и мат. физ. - 2005. - 142, № 2. - С. 365-370.
- Браттели У., Робинсон Д. Операторные алгебры и квантовая статистическая механика. - М.: Мир, 1982.
- Гоф Дж., Орлов Ю. Н., Сакбаев В. Ж., Смолянов О. Г. Рандомизированное квантование гамильтоновых систем// Докл. РАН. - 2021. - 498, № 1. - С. 31-36.
- Гохберг И. Ц., Крейн М. Г. Введение в теорию линейных несамосопряженных операторов. - М.: Наука, 1965.
- Холево A. С. Квантовая вероятность и квантовая статистика// Соврем. пробл. мат. Фундам. направл. - 1991. - 83. - С. 5-132.
- Шерстнев А. Н. Методы билинейных форм в некоммутативной теории меры и интеграла. - М.: Физматлит, 2008.
- Berger M. A. Central limit theorem for products of random matrices// Trans. Am. Math. Soc. - 1984. - 285, № 2. - С. 777-803.
- Chernoff P. Note on product formulas for operator semigroups// J. Funct. Anal. - 1968. - 2, № 2. - С. 238-242.
- Engel K. J., Nagel R. One-parameter semigroups for linear evolution equations. - New York: SpringerVerlag, 2000.
- Gough J. E., Ding H., Amini N. Reproducing kernel Hilbert space approach to non-Markovian quantum stochastic models// ArXiv. - 2024. - 2407.07231 [quant-ph].
- Holevo A. S. Quantum noise as noncommutative stationary random process// Int. J. Modern Phys. A. - 2022. - 37, № 20-21. - 2243011.
- Keyl M., Kiukas J., Werner R. F. Schwartz operators// Rev. Math. Phys. - 2016. - 28, № 3. - 1630001.
- Kossakowski A. On quantum statistical mechanics of non-Hamiltonian systems// Rept. Math. Phys. - 1972. - 3, № 4. - С. 247-274.
- Orlov Yu. N., Sakbaev V. Zh., Shmidt E. V. Operator approach to weak convergence of measures and limit theorems for random operators// Lobachevskii J. Math. - 2021. - 42, № 10. - С. 2413-2426.
- Sakbaev V. Zh. On the law of large numbers for compositions of independent random semigroups// Russ. Math. - 2016. - 60, № 10. - С. 72-76.
- Volovich I. V., Sakbaev V. Zh. On quantum dynamics on C∗-algebras// Proc. Steklov Inst. Math. - 2018. - 301, № 1. - С. 25-38.
Supplementary files
