Boundary singular problems for quasilinear equations involving mixed reaction-diffusion

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

We study the existence of solutions to the problem

\[\label{eng_A1}
\begin{array}{rl}
-\Delta u+u^p-M|\nabla u|^q=0 & \text{in }\;\Omega,\\
u=\mu & \text{on }\;\partial\Omega
\end{array}\]


in a bounded domain \(\Omega\), where \(p>1\), \(1, \(M>0\), \(\mu\) is a nonnegative Radon measure in \(\partial\Omega\), and the associated problem with a boundary isolated singularity at \(a\in\partial\Omega,\)

\[\label{eng_A2}
\begin{array}{rl}
-\Delta u+u^p-M|\nabla u|^q=0 & \text{in }\;\Omega,\\
u=0 & \text{on }\;\partial\Omega\setminus\{a\}.
\end{array}\]


The difficulty lies in the opposition between the two nonlinear terms which are not on the same nature. Existence of solutions to [eng_A1] is obtained under a capacitary condition \[\mu(K)\leq
c\min\left\{cap^{\partial\Omega}_{\frac{2}{p},p'},cap^{\partial\Omega}_{\frac{2-q}{q},q'}\right\}\quad\text{for
all compacts }K\subset\partial\Omega.\]
Problem [eng_A2] depends on several critical exponents on \(p\) and \(q\) as well as the position of \(q\) with respect to \(\dfrac{2p}{p+1}\).

Авторлар туралы

L. Véron

Institut Denis Poisson, Université de Tours

Хат алмасуға жауапты Автор.
Email: veronl@univ-tours.fr
Tours, France

Әдебиет тізімі

  1. Adams D., Hedberg L. Function spaces and potential theory. - London-Berlin-Heidelberg-New York: Springer, 1996.
  2. Adams D. R., Pierre M. Capacitary strong type estimates in semilinear problems// Ann. Inst. Fourier (Grenoble). - 1991. - 41. - C. 117-135.
  3. Alarc´on S., Garc´ia-Melia´n J., Quaas A. Nonexistence of positive supersolutions to some nonlinear elliptic problems// J. Math. Pures Appl. - 2013. - 90. - C. 618-634.
  4. Baras P., Pierre M. Singularit´es ´eliminable pour des ´equations semi-lin´eaires// Ann. Inst. Fourier. - 1984. - 34, № 1. - C. 185-206.
  5. Bidaut-V´eron M. F., Garcia-Huidobro M., V´eron L. A priori estimates for elliptic equations with reaction terms involving the function and its gradient// Math. Ann. - 2020. - 378. - C. 13-58.
  6. Bidaut-V´eron M. F., Garcia-Huidobro M., V´eron L. Measure data problems for a class of elliptic equations with mixed absorption-reaction// Adv. Nonlinear. Stud. - 2020. - 21. - C. 261-280.
  7. Bidaut-V´eron M. F., Garcia-Huidobro M., V´eron L. Boundary singular solutions of a class of equations with mixed absorption-reaction// Calc. Var. Part. Di er. Equ. - 2022. - 61, № 3. - 113.
  8. Bidaut-V´eron M. F., Hoang G., Nguyen Q. H., V´eron L. An elliptic semilinear equation with source term and boundary measure data: the supercritical case// J. Funct. Anal. - 2015. - 269. - C. 1995-2017.
  9. Bidaut-V´eron M. F., Ponce A., V´eron L. Isolated boundary singularities of semilinear elliptic equations// Calc. Var. Part. Di er. Equ. - 2011. - 40. - C. 183-221.
  10. Bidaut-V´eron M. F., V´eron L. Trace and boundary singularities of positive solutions of a class of quasilinear equations// Discr. Cont. Dyn. Syst. - 2022. - в печати.
  11. Boccardo L., Murat F., Puel J. P. R´esultats d’existence pour certains probl`emes elliptiques quasilin´eaires// Ann. Sc. Norm. Super. Pisa Cl. Sci. (4). - 1984. - 11. - C. 213-235.
  12. Doob J. L. Classical Potential Theory and Its Probabilistic Counterpart. - London-Berlin-Heidelberg-New York: Springer, 1984.
  13. Gidas B., Spruck J. Global and local behaviour of positive solutions of nonlinear elliptic equations// Commun. Pure Appl. Math. - 1981. - 34. - C. 525-598.
  14. Gilbarg D., Trudinger N. Elliptic partial di erential equations of second order. - London-Berlin- Heidelberg-New York: Springer, 1983. Contemporary Mathematics. Fundamental Directions, 2022, Vol. 68, No. 4, 564-574 573
  15. Gmira A., V´eron L. Boundary singularities of solutions of some nonlinear elliptic equations// Duke Math. J. - 1991. - 64. - C. 271-324.
  16. Marcus M., Nguyen P. T. Elliptic equations with nonlinear absorption depending on the solution and its gradient// Proc. Lond. Math. Soc. - 2015. - 111. - C. 205-239.
  17. Marcus M., V´eron L. The boundary trace of positive solutions of semilinear elliptic equations: the subcritical case// Arch. Ration. Mech. Anal. - 1998. - 144. - C. 200-231.
  18. Marcus M., V´eron L. Removable singularities and boundary traces// J. Math. Pures Appl. - 2001. - 80.- C. 879-900.
  19. Marcus M., V´eron L. Nonlinear elliptic equations involving measures. - Berlin: de Gruyter, 2014.
  20. Nguyen P. T., V´eron L. Boundary singularities of solutions to elliptic viscous Hamilton-Jacobi equations// J. Funct. Anal. - 2012. - 263. - C. 1487-1538.
  21. V´eron L. Singular solutions of some nonlinear elliptic equations// Nonlinear Anal. - 1981. - 5. - C. 225-242.
  22. V´eron L. Local and global aspects of quasilinear degenerate elliptic equations. - Hackensack: World Scienti c, 2017.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».