Взаимосвязь неалкогольной жировой болезни печени и дисбиоза кишечной микробиоты

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Аннотация. Неалкогольная жировая болезнь печени (НАЖБП) – распространенное заболевание, которое характеризуется избыточным накоплением жира в гепатоцитах у лиц с метаболической дисфункцией, не злоупотребляющих алкоголем. Патогенез НАЖБП многокомпонентный, в него вовлечены различные метаболические и генетические факторы. Проведенные в последние годы исследования указывают на наличие взаимосвязи между НАЖБП и микробиотой кишечника, играющей ключевую роль в развитии и прогрессировании данной патологии. В обзоре обсуждается влияние кишечной микробиоты и микробных метаболитов на основные звенья патогенеза НАЖБП, рассматриваются факторы, способствующие развитию дисбиоза кишечника, а также современные возможности модуляции кишечной микрофлоры как неотъемлемого компонента патогенетической терапии НАЖБП.

Об авторах

Анна А. Быстрова

ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. академика И.П. Павлова» Минздрава России

Автор, ответственный за переписку.
Email: abystrova@inbox.ru

к. м. н., доцент

Россия, Санкт-Петербург

Юрий Ш. Халимов

ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. академика И.П. Павлова» Минздрава России

Email: yushkha@gmail.com
ORCID iD: 0000-0002-7755-7275
SPIN-код: 7315-6746

д. м. н., профессор

Россия, Санкт-Петербург

Гуландом З. Шодикулова

Самаркандский государственный медицинский университет

Email: shodikulovagulandom@gmail.com
ORCID iD: 0000-0003-2679-1296

д. м. н., профессор

Узбекистан, Самарканд

Тулкин Т. Атоев

ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. академика И.П. Павлова» Минздрава России

Email: tulkin.atoev.1997@yandex.ru
ORCID iD: 0009-0008-2556-9291

клинический ординатор

Россия, Санкт-Петербург

Анна В. Лискер

ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. академика И.П. Павлова» Минздрава России

Email: a.lisker@mail.ru
ORCID iD: 0000-0003-4295-1202
SPIN-код: 3688-1505

к. м. н.

Россия, Санкт-Петербурга

Список литературы

  1. Ивашкин В.Т., Жаркова М.С., Корочанская Н.В. с соавт. Фенотипы неалкогольной жировой болезни печени в различных регионах Российской Федерации, диагностические и лечебные подходы в клинической практике. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2023; 33(2): 7–18. [Ivashkin V.T., Zharkova M.S., Korochanskaya N.V. et al. Phenotypes of non-alcoholic fatty liver disease in different regions of the Russian Federation, diagnostic and therapeutic approach in clinical practice. Rossijskiy zhurnal gastroenterologii, gepatologii, koloproktologii = Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2023; 33(2): 7–18 (In Russ.)]. https://doi.org/10.22416/1382-4376-2023-33-2-7-18. EDN: EGTMIH.
  2. Younossi Z.M., Golabi P., de Avila L. et al. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. J Hepatol. 2019; 71(4): 793–801. https://doi.org/10.1016/j.jhep.2019.06.021. PMID: 31279902.
  3. Евстифеева С.Е., Шальнова С.А., Куценко В.А. с соавт. Распространенность неалкогольной жировой болезни печени среди населения трудоспособного возраста: ассоциации с социально-демографическими показателями и поведенческими факторами риска (данные ЭССЕ-РФ-2). Кардиоваскулярная терапия и профилактика. 2022; 21(9): 40–49. [Evstifeeva S.E., Shalnova S.A., Kutsenko V.A. et al. Prevalence of non-alcoholic fatty liver disease among the working-age population: associations with socio-demographic indicators and behavioral risk factors (ESSE RF-2 data). Kardiovaskulyarnaya terapiya i profilaktika = Cardiovascular Therapy and Prevention. 2022; 21(9): 40–49 (In Russ.)]. https://doi.org/10.15829/1728-8800-2022-3356. EDN: SITSBL.
  4. Юдина Ю.В., Корсунский А.А., Аминова А.И. с соавт. Микробиота кишечника как отдельная система организма. Доказательная гастроэнтерология. 2019; 8(4–5): 36–43. [Yudina Yu.V., Korsunsky A.A., Aminova A.I. et al. Gut microbiota as a separate body system. Dokazatel’naya gastroenterologiya = Russian Journal of Evidence-Based Gastroenterology. 2019; 8(4–5): 36–43 (In Russ.)]. https://doi.org/10.17116/dokgastro2019804-05136. EDN: VXOAUR.
  5. DeGruttola A.K., Low D., Mizoguchi A., Mizoguchi E. Current understanding of dysbiosis in disease in human and animal models. Inflamm Bowel Dis. 2016; 22(5): 1137–50. https://doi.org/10.1097/MIB.0000000000000750. PMID: 27070911. PMCID: PMC4838534.
  6. Chen J., Vitetta L. Gut microbiota metabolites in NAFLD pathogenesis and therapeutic implications. Int J Mol Sci. 2020; 21(15): 5214. https://doi.org/10.3390/ijms21155214. PMID: 32717871. PMCID: PMC7432372.
  7. Jaeger J.W., Brandt A., Gui W. et al. Microbiota modulation by dietary oat beta-glucan prevents steatotic liver disease progression. JHEP Rep. 2024; 6(3): 100987. https://doi.org/10.1016/j.jhepr.2023.100987. PMID: 38328439. PMCID: PMC10844974.
  8. Bashiardes S., Shapiro H., Rozin S. et al. Non-alcoholic fatty liver and the gut microbiota. Mol Metab. 2016; 5(9): 782–94. https://doi.org/10.1016/j.molmet.2016.06.003. PMID: 27617201. PMCID: PMC5004228.
  9. Салль Т.С., Щербакова Е.С., Ситкин С.И. с соавт. Молекулярные механизмы развития неалкогольной жировой болезни печени. Профилактическая медицина. 2021; 24(4): 120–131. [Sall T.S., Shcherbakova E.S., Sitkin S.I. et al. Molecular mechanisms of non-alcoholic fatty liver disease development. Profilakticheskaya meditsina = The Russian Journal of Preventive Medicine. 2021; 24(4): 120–131 (In Russ.)]. https://doi.org/10.17116/profmed202124041120. EDN: LNMCGV.
  10. Jasirwan C.O.M., Muradi A., Hasan I. et al. Correlation of gut Firmicutes/Bacteroidetes ratio with fibrosis and steatosis stratified by body mass index in patients with non-alcoholic fatty liver disease. Biosci Microbiota Food Health. 2021; 40(1): 50–58. https://doi.org/10.12938/bmfh.2020-046. PMID: 33520569. PMCID: PMC7817510.
  11. Решетова М.С., Зольникова О.Ю., Ивашкин В.Т. с соавт. Роль кишечной микробиоты и ее метаболитов в патогенезе неалкогольной жировой болезни печени. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2022; 32(5): 75–88. [Reshetova M.S., Zolnikova O.Yu., Ivashkin V.T. et al. Gut microbiota and its metabolites in pathogenesis of NAFLD. Rossijskiy zhurnal gastroenterologii, gepatologii, koloproktologii = Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2022; 32(5): 75–88 (In Russ.)]. https://doi.org/10.22416/1382-4376-2022-32-5-75-88. EDN: LMLTGK.
  12. Xiong J., Chen X., Zhao Z. et al. A potential link between plasma short-chain fatty acids, TNF-α level and disease progression in non-alcoholic fatty liver disease: A retrospective study. Exp Ther Med. 2022; 24(3): 598. https://doi.org/10.3892/etm.2022.11536. PMID: 35949337. PMCID: PMC9353543.
  13. Tsai H.-J., Hung W.-C., Hung W.-W. et al. Circulating short-chain fatty acids and non-alcoholic fatty liver disease severity in patients with type 2 diabetes mellitus. Nutrients. 2023; 15(7): 1712. https://doi.org/10.3390/nu15071712. PMID: 37049552. PMCID: PMC10097193.
  14. Ji Y., Yin Y., Li Z., Zhang W. Gut microbiota-derived components and metabolites in the progression of non-alcoholic fatty liver disease (NAFLD). Nutrients. 2019; 11(8): 1712. https://doi.org/10.3390/nu11081712. PMID: 31349604. PMCID: PMC6724003.
  15. Boursier J., Diehl A.M. Nonalcoholic fatty liver disease and the gut microbiome. Clin Liver Dis. 2016; 20(2): 263–75. https://doi.org/10.1016/j.cld.2015.10.012. PMID: 27063268.
  16. Theofilis P., Vordoni A., Kalaitzidis R.G. Trimethylamine N-oxide levels in non-alcoholic fatty liver disease: A systematic review and meta-analysis. Metabolites. 2022; 12(12): 1243. https://doi.org/10.3390/metabo12121243. PMID: 36557281. PMCID: PMC9784457.
  17. Theofilis P., Vlachakis P.K., Oikonomou E. et al. Targeting the gut microbiome to treat cardiometabolic disease. Curr Atheroscler Rep. 2024; 26(2): 25–34. https://doi.org/10.1007/s11883-023-01183-2. PMID: 38180642.
  18. Wang Y.D., Chen W.D., Yu D. et al. The G-protein-coupled bile acid receptor, Gpbar1 (TGR5), negatively regulates hepatic inflammatory response through antagonizing nuclear factor κ light-chain enhancer of activated B cells (NF-κB) in mice. Hepatology. 2011; 54(4): 1421–32. https://doi.org/10.1002/hep.24525. PMID: 21735468. PMCID: PMC3184183.
  19. Chen J., Thomsen M., Vitetta L. Interaction of gut microbiota with dysregulation of bile acids in the pathogenesis of nonalcoholic fatty liver disease and potential therapeutic implications of probiotics. J Cell Biochem. 2019; 120(3): 2713–20. https://doi.org/10.1002/jcb.27635. PMID: 30443932.
  20. Wang C., Zhu C., Shao L. et al. Role of bile acids in dysbiosis and treatment of nonalcoholic fatty liver disease. Mediators Inflamm. 2019; 2019: 7659509. https://doi.org/10.1155/2019/7659509. PMID: 31341422. PMCID: PMC6613006.
  21. Ni Y., Lu M., Xu Y. et al. The role of gut microbiota-bile acids axis in the progression of non-alcoholic fatty liver disease. Front Microbiol. 2022; 13: 908011. https://doi.org/10.3389/fmicb.2022.908011. PMID: 35832821. PMCID: PMC9271914.
  22. Suga T., Yamaguchi H., Ogura J. et al. Altered bile acid composition and disposition in a mouse model of non-alcoholic steatohepatitis. Toxicol Appl Pharmacol. 2019; 379: 114664. https://doi.org/10.1016/j.taap.2019.114664. PMID: 31306673.
  23. Gueddouri D., Caüzac M., Fauveau V. et al. Insulin resistance per se drives early and reversible dysbiosis-mediated gut barrier impairment and bactericidal dysfunction. Mol Metab. 2022; 57: 101438. https://doi.org/10.1016/j.molmet.2022.101438. PMID: 35007789. PMCID: PMC8814824.
  24. Wang Y., Chen Y., Zhang X. et al. New insights in intestinal oxidative stress damage and the health intervention effects of nutrients: A review. J Funct Foods. 2020; 75: 104248. https://doi.org/10.1016/j.jff.2020.104248.
  25. Lin P.Y., Stern A., Peng H.H. et al. Redox and metabolic regulation of intestinal barrier function and associated disorders. Int J Mol Sci. 2022; 23(22): 14463. https://doi.org/10.3390/ijms232214463. PMID: 36430939. PMCID: PMC9699094.
  26. Riedel S., Pheiffer C., Johnson R. et al. Intestinal barrier function and immune homeostasis are missing links in obesity and type 2 diabetes development. Front Endocrinol (Lausanne). 2022; 12: 833544. https://doi.org/10.3389/fendo.2021.833544. PMID: 35145486. PMCID: PMC8821109.
  27. Lamichhane S., Sen P., Dickens A.M. et al. Dysregulation of secondary bile acid metabolism precedes islet autoimmunity and type 1 diabetes. Cell Rep Med. 2022; 3(10): 100762. https://doi.org/10.1016/j.xcrm.2022.100762. PMID: 36195095. PMCID: PMC9589006.
  28. Pratim Das P., Medhi S. Role of inflammasomes and cytokines in immune dysfunction of liver cirrhosis. Cytokine. 2023; 170: 156347. https://doi.org/10.1016/j.cyto.2023.156347. PMID: 37639845.
  29. Aron-Wisnewsky J., Vigliotti C., Witjes J. et al. Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders. Nat Rev Gastroenterol Hepatol. 2020; 17(5): 279–97. https://doi.org/10.1038/s41575-020-0269-9. PMID: 32152478.
  30. Dumas M.-E., Rothwell A.R., Hoyles L. et al. Microbial-host co-metabolites are prodromal markers predicting phenotypic heterogeneity in behavior, obesity, and impaired glucose tolerance. Cell Rep. 2017; 20(1): 136–48. https://doi.org/10.1016/j.celrep.2017.06.039. PMID: 28683308. PMCID: PMC5507771.
  31. Maksymiuk K.M., Szudzik M., Samborowska E. et al. Mice, rats, and guinea pigs differ in FMOs expression and tissue concentration of TMAO, a gut bacteria-derived biomarker of cardiovascular and metabolic diseases. PLoS One. 2024; 19(1): e0297474. https://doi.org/10.1371/journal.pone.0297474. PMID: 38266015. PMCID: PMC10807837.
  32. Grinshpan L.S., Eilat-Adar S., Ivancovsky-Wajcman D. et al. Ultra-processed food consumption and non-alcoholic fatty liver disease, metabolic syndrome and insulin resistance: A systematic review. JHEP Rep. 2023; 6(1): 100964. https://doi.org/10.1016/j.jhepr.2023.100964. PMID: 38234408. PMCID: PMC10792654.
  33. Liu Z., Huang H., Zeng Y. et al. Association between ultra-processed foods consumption and risk of non-alcoholic fatty liver disease: A population-based analysis of NHANES 2011–2018. Br J Nutr. 2023; 130(6): 996–1004. https://doi.org/10.1017/S0007114522003956. PMID: 36522692.
  34. Meneguelli T.S., Juvanhol L.L., Leite A.D. et al. Minimally processed versus processed and ultra-processed food in individuals at cardiometabolic risk. Br Food J. 2022; 124(3): 811–32. https://doi.org/10.1108/BFJ-12-2020-1087.
  35. Hosseininasab D., Shiraseb F., Noori S. et al. The relationship between ultra-processed food intake and cardiometabolic risk factors in overweight and obese women: A cross-sectional study. Front Nutr. 2022; 9: 945591. https://doi.org/10.3389/fnut.2022.945591. PMID: 36017229. PMCID: PMC9396040.
  36. Jennison E., Byrne C.D. The role of the gut microbiome and diet in the pathogenesis of non-alcoholic fatty liver disease. Clin Mol Hepatol. 2021; 27(1): 22–43. https://doi.org/10.3350/cmh.2020.0129. PMID: 33291863. PMCID: PMC7820212.
  37. Arab J.P., Karpen S.J., Dawson P.A. et al. Bile acids and nonalcoholic fatty liver disease: Molecular insights and therapeutic perspectives. Hepatology. 2017; 65(1): 350–62. https://doi.org/10.1002/hep.28709. PMID: 27358174. PMCID: PMC5191969.
  38. Jackson K.G., Way G.W., Zhou H. Bile acids and sphingolipids in non-alcoholic fatty liver disease. Chin Med J (Engl). 2022; 135(10): 1163–71. https://doi.org/10.1097/CM9.0000000000002156. PMID: 35788089. PMCID: PMC9337250.
  39. Carpi R.Z., Barbalho S.M., Sloan K.P. et al. The effects of probiotics, prebiotics and synbiotics in non-alcoholic fat liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH): A systematic review. Int J Mol Sci. 2022; 23(15): 8805. https://doi.org/10.3390/ijms23158805. PMID: 35955942. PMCID: PMC9369010.
  40. Sharpton S.R., Maraj B., Harding-Theobald E. et al. Gut microbiome-targeted therapies in nonalcoholic fatty liver disease: A systematic review, meta-analysis, and meta-regression. Am J Clin Nutr. 2019; 110(1): 139–49. https://doi.org/10.1093/ajcn/nqz042. PMID: 31124558. PMCID: PMC6599739.
  41. Arellano-García L., Portillo M.P., Martínez J.A. et al. Usefulness of probiotics in the management of NAFLD: Evidence and involved mechanisms of action from preclinical and human models. Int J Mol Sci. 2022; 23(6): 3167. https://doi.org/10.3390/ijms23063167. PMID: 35328587. PMCID: PMC8950320.
  42. Shenderov B., Sinitsa A., Zakharchenko M., Lang C. Drawbacks and negative consequences of traditional probiotics based on live microorganisms. In the book: Metabiotics. Springer, Cham. 2020: 43–48. ISBN: 978-3-030-34166-4. https://doi.org/10.1007/978-3-030-34167-1_9.
  43. Sharma M., Shukla G. Metabiotics: One step ahead of probiotics; an insight into mechanisms involved in anticancerous effect in colorectal cancer. Front Microbiol. 2016; 7: 1940. https://doi.org/10.3389/fmicb.2016.01940. PMID: 27994577. PMCID: PMC5133260.
  44. Xue L., Deng Z., Luo W. et al. Effect of fecal microbiota transplantation on non-alcoholic fatty liver disease: A randomized clinical trial. Front Cell Infect Microbiol. 2022; 12: 759306. https://doi.org/10.3389/fcimb.2022.759306. PMID: 35860380. PMCID: PMC9289257.
  45. Abenavoli L., Maurizi V., Rinninella E. et al. Fecal microbiota transplantation in NAFLD treatment. Medicina (Kaunas). 2022; 58(11): 1559. https://doi.org/10.3390/medicina58111559. PMID: 36363516. PMCID: PMC9695159.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Влияние микробных метаболитов на воспаление и прогрессирование неалкогольной жировой болезни печени*

Скачать (216KB)
3. Рис. 2. Влияние диетических факторов на кишечный микробиом и развитие неалкогольной жировой болезни печени*

Скачать (231KB)

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».