Chemopreventive and anti-tumor potential of ademetionine in case of chronic hepatic disorders

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Hepatocellular cancer (HCC) is a primary hepatic tumor starting from hepatocytes, is characterized by high aggressiveness and conditionally unfavorable prognosis, which makes the problem of its chemoprevention urgent. Despite the numerous drugs considered as chemopreventive agents, their use in clinical practice is limited by the small volume and unsystematic nature of evidence of their efficacy and safety. Current work considers well known metabolic and epigenetic mechanisms of action of ademetionine (S-adenosyl-L-methionine), which are laying in the basis of its chemopreventive and antitumor activity against HCC.

About the authors

Veronika A. Prikhodko

Saint Petersburg State Chemical and Pharmaceutical University of the Ministry of Healthcare of Russia

Author for correspondence.
Email: veronika.prihodko@pharminnotech.com
ORCID iD: 0000-0002-4690-1811

PhD (Biology), senior lecturer of the Department of pharmacology and clinical pharmacology

Russian Federation, Saint Petersburg

Sergey V. Okovityi

Saint Petersburg State Chemical and Pharmaceutical University of the Ministry of Healthcare of Russia; Saint Petersburg State University

Email: sergey.okovity@pharminnotech.com
ORCID iD: 0000-0003-4294-5531

MD, Dr. Sci. (Medicine), professor, head of the Department of pharmacology and clinical pharmacology; professor of the scientific, clinical and educational center for gastroenterology and hepatology

Russian Federation, Saint Petersburg; Saint Petersburg

References

  1. Toh M.R., Wong E.Y.T., Wong S.H. et al. Global epidemiology and genetics of hepatocellular carcinoma. Gastroenterology. 2023; 164(5): 766–82. https://doi.org/10.1053/j.gastro.2023.01.033. PMID: 36738977.
  2. Меньшиков К.В., Султанбаев А.В., Мусин Ш.И. с соавт. Гепатоцеллюлярная карцинома: этиологические факторы и механизмы развития. Обзор литературы. Креативная хирургия и онкология. 2022; 12(2): 139–150. [Menshikov K.V., Sultanbaev A.V., Musin Sh.I. et al. Hepatocellular carcinoma: Aetiology and mechanisms of development. A literature review. Kreativnaya khirurgiya i onkologiya = Creative Surgery and Oncology. 2022; 12(2): 139–150 (In Russ.)]. https://doi.org/10.24060/2076-3093-2022-12-2-139-150. EDN: JYXBIL.
  3. Росстат. Здравоохранение в России. 2023: Статистический сборник. М. 2023: 179 с. Доступ: https://rosstat.gov.ru/storage/mediabank/Zdravoohran-2023.pdf (дата обращения – 01.04.2024). [Federal State Statistics Service (Russia). Healthcare in Russia. 2023: Statistical collection. Moscow. 2023; 179 pp. URL: https://rosstat.gov.ru/storage/mediabank/Zdravoohran-2023.pdf (date of access – 01.04.2024).
  4. Клинические рекомендации. Рак печени (гепатоцеллюлярный). Ассоциация онкологов России, Междисциплинарное общество специалистов по опухолям печени, Общероссийская общественная организация «Российское общество клинической онкологии», Общероссийская общественная организация содействия развитию лучевой диагностики и терапии «Российское общество рентгенологов и радиологов». Рубрикатор клинических рекомендаций Минздрава России. 2022. ID: 1. Доступ: https://cr.minzdrav.gov.ru/schema/1_3 (дата обращения – 01.03.2024). [Clinical guidelines. Liver cancer (hepatocellular). Association of Oncologists of Russia, Interdisciplinary Society of Liver Tumor Specialists, Russian Society of Clinical Oncology, Russian Society of Radiologists and Radiologists. Rubricator of clinical guidelines of the Ministry of Healthcare of Russia. 2022. ID: 1. URL: https://cr.minzdrav.gov.ru/schema/1_3 (date of access – 01.03.2024) (In Russ.)].
  5. Pinheiro P.S., Jones P.D., Medina H. et al. Incidence of etiology-specific hepatocellular carcinoma: Diverging trends and significant heterogeneity by race and ethnicity. Clin Gastroenterol Hepatol. 2024; 22(3): 562–571.e8. https://doi.org/10.1016/j.cgh.2023.08.016. PMID: 37678486. PMCID: PMC10915102.
  6. Tran S., Zou B., Kam L. et al. Updates in characteristics and survival rates of hepatocellular carcinoma in a nationwide cohort of real-world US patients, 2003–2021. J Hepatocell Carcinoma. 2023; 10: 2147–58. https://doi.org/10.2147/JHC.S420603. PMID: 38076642. PMCID: PMC10700040.
  7. Athuluri-Divakar S.K., Hoshida Y. Generic chemoprevention of hepatocellular carcinoma. Ann N Y Acad Sci. 2019; 1440(1): 23–35. https://doi.org/10.1111/nyas.13971. PMID: 30221358. PMCID: PMC6420365.
  8. Suzuki H., Ng C.H., Tan D.J.H. et al. Chemoprevention in hepatocellular carcinoma. Curr Hepatology Rep. 2023; 22: 108–17. https://doi.org/10.1007/s11901-023-00614-7.
  9. Оковитый С.В., Приходько В.А., Безбородкина Н.Н., Кудрявцев Б.Н. Гепатопротекторы. Руководство для врачей. 2-е изд., доп. и перераб. М: ГЭОТАР-Медиа. 2022; 240 с. [Okovityi S.V., Prikhodko V.A., Bezborodkina N.N., Kudryavtsev B.N. Hepatoprotectors. Guide for doctors. 2nd ed., add. and revised. Moscow: GEOTAR-Media. 2022; 240 pp. (In Russ.)]. ISBN: 9785970466896.
  10. Снеговой А.В., Манзюк Л.В. Эффективность Гептрала® в лечении печеночной токсичности, обусловленной цитостатической химиотерапией. Фарматека. 2010; (6): 56–61. [Snegovoi A.V., Manzyuk L.V. Efficacy of Heptral® in the treatment of liver toxicity caused by cytostatic chemotherapy. Farmateka. 2010; (6): 56–61 (In Russ.)]. EDN: PEKWKX.
  11. Lu S.C., Mato J.M. S-adenosylmethionine in liver health, injury, and cancer. Physiol Rev. 2012; 92(4): 1515–42. https://doi.org/10.1152/physrev.00047.2011. PMID: 23073625. PMCID: PMC3698976.
  12. Lee T.D., Sadda M.R., Mendler M.H. et al. Abnormal hepatic methionine and glutathione metabolism in patients with alcoholic hepatitis. Alcohol Clin Exp Res. 2004; 28(1): 173–81. https://doi.org/10.1097/01.ALC.0000108654.77178.03. PMID: 14745316.
  13. Lu S.C., Mato J.M. S-Adenosylmethionine in cell growth, apoptosis and liver cancer. J Gastroenterol Hepatol. 2008; 23 Suppl 1(Suppl 1): S73–S77. https://doi.org/10.1111/j.1440-1746.2007.05289.x. PMID: 18336669. PMCID: PMC2408691.
  14. Li J., Ramani K., Sun Z. et al. Forced expression of methionine adenosyltransferase 1A in human hepatoma cells suppresses in vivo tumorigenicity in mice. Am J Pathol. 2010; 176(5): 2456–66. https://doi.org/10.2353/ajpath.2010.090810. PMID: 20363925. PMCID: PMC2861110.
  15. Lozano-Sepulveda S.A., Bautista-Osorio E., Merino-Mascorro J.A. et al. S-adenosyl-L-methionine modifies antioxidant-enzymes, glutathione-biosynthesis and methionine adenosyltransferases-1/2 in hepatitis C virus-expressing cells. World J Gastroenterol. 2016; 22(14): 3746–57. https://doi.org/10.3748/wjg.v22.i14.3746. PMID: 27076759. PMCID: PMC4814737.
  16. Huang Z.Z., Mao Z., Cai J., Lu S.C. Changes in methionine adenosyltransferase during liver regeneration in the rat. Am J Physiol. 1998; 275(1): G14–G21. https://doi.org/10.1152/ajpgi.1998.275.1.G14. PMID: 9655679.
  17. Huang Z.Z., Mato J.M., Kanel G., Lu S.C. Differential effect of thioacetamide on hepatic methionine adenosyltransferase expression in the rat. Hepatology. 1999; 29(5): 1471–78. https://doi.org/10.1002/hep.510290525. PMID: 10216131.
  18. Lu S.C., Huang Z.Z., Yang H. et al. Changes in methionine adenosyltransferase and S-adenosylmethionine homeostasis in alcoholic rat liver. Am J Physiol Gastrointest Liver Physiol. 2000; 279(1): G178–G185. https://doi.org/10.1152/ajpgi.2000.279.1.G178. PMID: 10898761.
  19. Cai J., Mao Z., Hwang J.J., Lu S.C. Differential expression of methionine adenosyltransferase genes influences the rate of growth of human hepatocellular carcinoma cells. Cancer Res. 1998; 58(7): 1444–50. PMID: 9537246.
  20. Antoniv A., Antofiychuk N., Danylyshina T. et al. Clinical efficacy of s-adenosylmethionine in patients with non-alcoholic steatohepatitis and chronic kidney disease I–II stage. Georgian Med News. 2017; (273): 31–36. PMID: 29328026.
  21. Суханов Д.С., Виноградова Т.И., Заболотных Н.В. и др. Гепатопротекторная активность ремаксола и S-аденозил-L-метионина при поражении печени противотуберкулезными препаратами резервного ряда. Архив патологии. 2013; 75(2): 25–29. [Sukhanov D.S., Vinogradova T.I., Zabolotnykh N.V. et al. The hepatoprotective activity of remaxol and S-adenosyl-L-methionine for liver damage caused by reserve-series antituberculosis drugs. Akrhiv patologii = Archive of Pathology. 2013; 75(2): 25–29 (In Russ.)]. EDN: OJCCNI.
  22. Dayoub R., Thasler W.E., Bosserhoff A.K. et al. Regulation of polyamine synthesis in human hepatocytes by hepatotrophic factor augmenter of liver regeneration. Biochem Biophys Res Commun. 2006; 345(1): 181–87. https://doi.org/10.1016/j.bbrc.2006.04.040. PMID: 16677602.
  23. Zhou S., Gu J., Liu R. et al. Spermine alleviates acute liver injury by inhibiting liver-resident macrophage pro-inflammatory response through ATG5-dependent autophagy. Front Immunol. 2018; 9: 948. https://doi.org/10.3389/fimmu.2018.00948. PMID: 29770139. PMCID: PMC5940752.
  24. Shi H.X., Liang C., Yao C.Y. et al. Elevation of spermine remodels immunosuppressive microenvironment through driving the modification of PD-L1 in hepatocellular carcinoma. Cell Commun Signal. 2022; 20(1): 175. https://doi.org/10.1186/s12964-022-00981-6. PMID: 36348350. PMCID: PMC9644467.
  25. Xiang L., Piao L., Wang D., Qi L.F. Overexpression of SMS in the tumor microenvironment is associated with immunosuppression inhepatocellular carcinoma. Front Immunol. 2022; 13: 974241. https://doi.org/10.3389/fimmu.2022.974241. PMID: 36544774. PMCID: PMC9760682.
  26. Prasher P., Sharma M., Singh S.K. et al. Spermidine as a promising anticancer agent: Recent advances and newer insights on its molecular mechanisms. Front Chem. 2023; 11: 1164477. https://doi.org/10.3389/fchem.2023.1164477. PMID: 37090250. PMCID: PMC10117651.
  27. Okumura S., Teratani T., Fujimoto Y. et al. Oral administration of polyamines ameliorates liver ischemia/reperfusion injury and promotes liver regeneration in rats. Liver Transpl. 2016; 22(9): 1231–44. https://doi.org/10.1002/lt.24471. PMID: 27102080.
  28. Adhikari R., Shah R., Reyes-Gordillo K. et al. Spermidine prevents ethanol and lipopolysaccharide-induced hepatic injury in mice. Molecules. 2021; 26(6): 1786. https://doi.org/10.3390/molecules26061786. PMID: 33810101. PMCID: PMC8004654.
  29. Szydlowska M., Lasky G., Oldham S. et al. Restoring polyamine levels by supplementation of spermidine modulates hepatic immune landscape in murine model of NASH. Biochim Biophys Acta Mol Basis Dis. 2023; 1869(6): 166697. https://doi.org/10.1016/j.bbadis.2023.166697. PMID: 37054999.
  30. Yue F., Li W., Zou J. et al. Spermidine prolongs lifespan and prevents liver fibrosis and hepatocellular carcinoma by activating MAP1S-mediated autophagy. Cancer Res. 2017; 77(11): 2938–51. https://doi.org/10.1158/0008-5472.CAN-16-3462. PMID: 28386016. PMCID: PMC5489339.
  31. Hwangbo H., Kim D.H., Kim M.Y. et al. Auranofin accelerates spermidine-induced apoptosis via reactive oxygen species generation and suppression of PI3K/Akt signaling pathway in hepatocellular carcinoma. Fish Aquat Sci. 2023; 26(2): 133–44. https://doi.org/10.47853/FAS.2023.e11.
  32. Caro A.A., Cederbaum A.I. Antioxidant properties of S-adenosyl-L-methionine in Fe(2+)-initiated oxidations. Free Radic Biol Med. 2004; 36(10): 1303–16. https://doi.org/10.1016/j.freeradbiomed.2004.02.015. PMID: 15110395.
  33. Miyanishi K., Hoki T., Tanaka S., Kato J. Prevention of hepatocellular carcinoma: Focusing on antioxidant therapy. World J Hepatol. 2015; 7(3): 59399. https://doi.org/10.4254/wjh.v7.i3.593. PMID: 25848483. PMCID: PMC4381182.
  34. Cucarull B., Tutusaus A., Hernaez-Alsina T. et al. Antioxidants threaten multikinase inhibitor efficacy against liver cancer by blocking mitochondrial reactive oxygen species. Antioxidants (Basel). 2021; 10(9): 1336. https://doi.org/10.3390/antiox10091336. PMID: 34572967. PMCID: PMC8468105.
  35. Zhang V.X., Sze K.M., Chan L.K. et al. Antioxidant supplements promote tumor formation and growth and confer drug resistance in hepatocellular carcinoma by reducing intracellular ROS and induction of TMBIM1. Cell Biosci. 2021; 11(1): 217. https://doi.org/10.1186/s13578-021-00731-0. PMID: 34924003. PMCID: PMC8684635.
  36. Vergani L., Baldini F., Khalil M. et al. New Perspectives of S-Adenosylmethionine (SAMe) applications to attenuate fatty acid-induced steatosis and oxidative stress in hepatic and endothelial cells. Molecules. 2020; 25(18): 4237. https://doi.org/10.3390/molecules25184237. PMID: 32942773. PMCID: PMC7570632.
  37. Brown J.M., Kuhlman C., Terneus M.V. et al. S-adenosyl-l-methionine protection of acetaminophen mediated oxidative stress and identification of hepatic 4-hydroxynonenal protein adducts by mass spectrometry. Toxicol Appl Pharmacol. 2014; 281(2): 174–84. https://doi.org/10.1016/j.taap.2014.08.027. PMID: 25246065. PMCID: PMC4418180.
  38. Cavallaro R.A., Nicolia V., Fiorenza M.T. et al. S-Adenosylmethionine and superoxide dismutase 1 synergistically counteract Alzheimer’s disease features progression in TgCRND8 mice. Antioxidants (Basel). 2017; 6(4): 76. https://doi.org/10.3390/antiox6040076. PMID: 28973985. PMCID: PMC5745486.
  39. Xia J.K., Tang N., Wu X.Y., Ren H.Z. Deregulated bile acids may drive hepatocellular carcinoma metastasis by inducing an immunosuppressive microenvironment. Front Oncol. 2022; 12: 1033145. https://doi.org/10.3389/fonc.2022.1033145. PMID: 36338764. PMCID: PMC9634065.
  40. Song Q., Guo J., Zhang Y., Chen W. The beneficial effects of taurine in alleviating fatty liver disease. J Funct Foods. 2021; 77: 104351. https://doi.org/10.1016/j.jff.2020.104351.
  41. Tu S., Zhang X., Luo D. et al. Effect of taurine on the proliferation and apoptosis of human hepatocellular carcinoma HepG2 cells. Exp Ther Med. 2015; 10(1): 193–200. https://doi.org/10.3892/etm.2015.2476. PMID: 26170934. PMCID: PMC4486811.
  42. Afifi A.M., El-Husseiny A.M., Tabashy R.H. et al. Sorafenib-taurine combination model for hepatocellular carcinoma cells: Immunological aspects. Asian Pac J Cancer Prev. 2019; 20(10): 3007–13. https://doi.org/10.31557/APJCP.2019.20.10.3007. PMID: 31653148. PMCID: PMC6982677.
  43. Kotb R.R., Afifi A.M., El-Houseini M.E. et al. The potential immuno-stimulating effect of curcumin, piperine, and taurine combination in hepatocellular carcinoma; a pilot study. Discov Oncol. 2023; 14(1): 169. https://doi.org/10.1007/s12672-023-00785-1. PMID: 37704828. PMCID: PMC10499730.
  44. Wang K., Fang S., Liu Q. et al. TGF-β1/p65/MAT2A pathway regulates liver fibrogenesis via intracellular SAM. EBioMedicine. 2019; 42: 458–69. https://doi.org/10.1016/j.ebiom.2019.03.058. PMID: 30926424. PMCID: PMC6491716.
  45. Ramani K., Yang H., Xia M. et al. Leptin’s mitogenic effect in human liver cancer cells requires induction of both methionine adenosyltransferase 2A and 2beta. Hepatology. 2008; 47(2): 521–31. https://doi.org/10.1002/hep.22064. PMID: 18041713. PMCID: PMC2387125.
  46. Luedde T., Schwabe R.F. NF-κB in the liver-linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2011; 8(2): 108–18. https://doi.org/10.1038/nrgastro.2010.213. PMID: 21293511. PMCID: PMC3295539.
  47. Lyu S.Y., Xiao W., Cui G.Z. et al. Role and mechanism of DNA methylation and its inhibitors in hepatic fibrosis. Front Genet. 2023; 14: 1124330. https://doi.org/10.3389/fgene.2023.1124330. PMID: 37056286. PMCID: PMC10086238.
  48. Ramani K., Yang H., Kuhlenkamp J. et al. Changes in the expression of methionine adenosyltransferase genes and S-adenosylmethionine homeostasis during hepatic stellate cell activation. Hepatology. 2010; 51(3): 986–95. https://doi.org/10.1002/hep.23411. PMID: 20043323. PMCID: PMC2905860.
  49. Karaa A., Thompson K.J., McKillop I.H. et al. S-adenosyl-L-methionine attenuates oxidative stress and hepatic stellate cell activation in an ethanol-LPS-induced fibrotic rat model. Shock. 2008; 30(2): 197–205. https://doi.org/10.1097/shk.0b013e318160f417. PMID: 18180699.
  50. Yan X., Liu Z., Chen Y. Regulation of TGF-beta signaling by Smad7. Acta Biochim Biophys Sin (Shanghai). 2009; 41(4): 263–72. https://doi.org/10.1093/abbs/gmp018. PMID: 19352540. PMCID: PMC7110000.
  51. Shah P.V., Balani P., Lopez A.R. et al. A review of pirfenidone as an anti-fibrotic in idiopathic pulmonary fibrosis and its probable role in other diseases. Cureus. 2021; 13(1): e12482. https://doi.org/10.7759/cureus.12482. PMID: 33564498. PMCID: PMC7861090.
  52. Bi L., Huang Y., Li J. et al. Pirfenidone attenuates renal tubulointerstitial fibrosis through inhibiting miR-21. Nephron. 2022; 146(1): 110–20. https://doi.org/10.1159/000519495. PMID: 34724669.
  53. Seniutkin O., Furuya S., Luo Y.S. et al. Effects of pirfenidone in acute and sub-chronic liver fibrosis, and an initiation-promotion cancer model in the mouse. Toxicol Appl Pharmacol. 2018; 339: 1–9. https://doi.org/10.1016/j.taap.2017.11.024. PMID: 29197520.
  54. Cai X., Liu X., Xie W. et al. Hydronidone for the treatment of liver fibrosis related to chronic hepatitis B: A phase 2 randomized controlled trial. Clin Gastroenterol Hepatol. 2023; 21(7): 1893–1901.e7. https://doi.org/10.1016/j.cgh.2022.05.056. PMID: 35842120.
  55. Corrales F., Giménez A., Alvarez L. et al. S-adenosylmethionine treatment prevents carbon tetrachloride-induced S-adenosylmethionine synthetase inactivation and attenuates liver injury. Hepatology. 1992; 16(4): 1022–27. https://doi.org/10.1002/hep.1840160427. PMID: 1398482.
  56. Li Z., Wang F., Liang B. et al. Methionine metabolism in chronic liver diseases: an update on molecular mechanism and therapeutic implication. Signal Transduct Target Ther. 2020; 5(1): 280. https://doi.org/10.1038/s41392-020-00349-7. PMID: 33273451. PMCID: PMC7714782.
  57. Casini A., Banchetti E., Milani S. S-adenosylmethionine inhibits collagen synthesis by human fibroblasts in vitro. Methods Find Exp Clin Pharmacol. 1989; 11(5): 331–34. PMID: 2755279.
  58. Thompson K.J., Lakner A.M., Cross B.W. et al. S-adenosyl-L-methionine inhibits collagen secretion in hepatic stellate cells via increased ubiquitination. Liver Int. 2011; 31(6): 891–901. https://doi.org/10.1111/j.1478–3231.2011.02512.x. PMID: 21645221.
  59. Matsui H., Kawada N. Effect of S-adenosyl-L-methionine on the activation, proliferation and contraction of hepatic stellate cells. Eur J Pharmacol. 2005; 509(1): 31–36. https://doi.org/10.1016/j.ejphar.2004.12.041. PMID: 15713426.
  60. Simile M.M., Banni S., Angioni E. et al. 5’-Methylthioadenosine administration prevents lipid peroxidation and fibrogenesis induced in rat liver by carbon-tetrachloride intoxication. J Hepatol. 2001; 34(3): 386–94. https://doi.org/10.1016/s0168–8278(00)00078–7. PMID: 11322199.
  61. Habash N.W., Sehrawat T.S., Shah V.H., Cao S. Epigenetics of alcohol-related liver diseases. JHEP Rep. 2022; 4(5): 100466. https://doi.org/10.1016/j.jhepr.2022.100466. PMID: 35462859. PMCID: PMC9018389.
  62. Vachher M., Bansal S., Kumar B. et al. Deciphering the role of aberrant DNA methylation in NAFLD and NASH. Heliyon. 2022; 8(10): e11119. https://doi.org/10.1016/j.heliyon.2022.e11119. PMID: 36299516. PMCID: PMC9589178.
  63. Шапошников А.В., Кит О.И., Кутилин Д.С., Юрьева Е.А. Генетические и эпигенетические особенности и маркеры гепатоцеллюлярных карцином. Современные проблемы науки и образования. 2021; (5): 119. [Shaposhnikov A.V., Kit O.I., Kutilin D.S., Yureva E.A. Genetic and epigenetic features and markers of hepatocellular carcinomas. Sovremennyye problemy nauki i obrazovaniya = Modern Problems of Science and Education. 2021; (5): 119 (In Russ.)]. https://doi.org/10.17513/spno.31086. EDN: SWOWDN.
  64. Wang Y., Sun Z., Szyf M. S-adenosyl-methionine (SAM) alters the transcriptome and methylome and specifically blocks growth and invasiveness of liver cancer cells. Oncotarget. 2017; 8(67): 111866–81. https://doi.org/10.18632/oncotarget.22942. PMID: 29340097. PMCID: PMC5762365.
  65. Frau M., Tomasi M.L., Simile M.M. et al. Role of transcriptional and posttranscriptional regulation of methionine adenosyltransferases in liver cancer progression. Hepatology. 2012; 56(1): 165–75. https://doi.org/10.1002/hep.25643. PMID: 22318685.
  66. Mosca L., Pagano M., Pecoraro A. et al. S-Adenosyl-l-methionine overcomes ul3-mediated drug resistance in p53 deleted colon cancer cells. Int J Mol Sci. 2020; 22(1): 103. https://doi.org/10.3390/ijms22010103. PMID: 33374288. PMCID: PMC7795960.
  67. Scheau C., Badarau I.A., Costache R. et al. The role of matrix metalloproteinases in the epithelial – mesenchymal transition of hepatocellular carcinoma. Anal Cell Pathol (Amst). 2019; 2019: 9423907. https://doi.org/10.1155/2019/9423907. PMID: 31886121. PMCID: PMC6899323.
  68. Wei L., Lun Y., Zhou X. et al. Novel urokinase-plasminogen activator inhibitor SPINK13 inhibits growth and metastasis of hepatocellular carcinoma in vivo. Pharmacol Res. 2019; 143: 73–85. https://doi.org/10.1016/j.phrs.2019.03.009. PMID: 30862605.
  69. Zsigrai S., Kalmar A., Nagy Z.B. et al. S-Adenosylmethionine treatment of colorectal cancer cell lines alters DNA methylation, DNA repair and tumor progression-related gene expression. Cells. 2020; 9(8): 1864. https://doi.org/10.3390/cells9081864. PMID: 32784836. PMCID: PMC7464653.
  70. Da M.X., Zhang Y.B., Yao J.B., Duan Y.X. DNA methylation regulates expression of VEGF-C, and S-adenosylmethionine is effective for VEGF-C methylation and for inhibiting cancer growth. Braz J Med Biol Res. 2014; 47(12): 1021–28. https://doi.org/10.1590/1414-431X20144005. PMID: 25387667. PMCID: PMC4244666.
  71. Luo J., Li Y.N., Wang F. et al. S-adenosylmethionine inhibits the growth of cancer cells by reversing the hypomethylation status of c-myc and H-ras in human gastric cancer and colon cancer. Int J Biol Sci. 2010; 6(7): 784–95. https://doi.org/10.7150/ijbs.6.784. PMID: 21152119. PMCID: PMC2999854.
  72. Chik F., Machnes Z., Szyf M. Synergistic anti-breast cancer effect of a combined treatment with the methyl donor S-adenosyl methionine and the DNA methylation inhibitor 5-aza-2’-deoxycytidine. Carcinogenesis. 2014; 35(1): 138–44. https://doi.org/10.1093/carcin/bgt284. PMID: 23985780.
  73. Ham M.S., Lee J.K., Kim K.C. S-adenosyl methionine specifically protects the anticancer effect of 5-FU via DNMTs expression in human A549 lung cancer cells. Mol Clin Oncol. 2013; 1(2): 373–78. https://doi.org/10.3892/mco.2012.53. PMID: 24649178. PMCID: PMC3956277.
  74. Mehdi A., Attias M., Mahmood N. et al. Enhanced anticancer effect of a combination of S–adenosylmethionine (SAM) and Immune checkpoint inhibitor (ICPi) in a syngeneic mouse model of advanced melanoma. Front Oncol. 2020; 10: 1361. https://doi.org/10.3389/fonc.2020.01361. PMID: 32983966. PMCID: PMC7492272.
  75. Qin S., Bai Y., Lim H.Y. et al. Randomized, multicenter, open-label study of oxaliplatin plus fluorouracil/leucovorin versus doxorubicin as palliative chemotherapy in patients with advanced hepatocellular carcinoma from Asia. J Clin Oncol. 2013; 31(28): 3501–8. https://doi.org/10.1200/JCO.2012.44.5643. PMID: 23980077.
  76. Mei Q., Chen M., Lu X. et al. An open-label, single-arm, phase I/II study of lower-dose decitabine based therapy in patients with advanced hepatocellular carcinoma. Oncotarget. 2015; 6(18): 16698–711. https://doi.org/10.18632/oncotarget.3677. PMID: 25895027. PMCID: PMC4599300.
  77. García-Trevijano E.R., Martínez-Chantar M.L., Latasa M.U. et al. NO sensitizes rat hepatocytes to proliferation by modifying S-adenosylmethionine levels. Gastroenterology. 2002; 122(5): 1355–63. https://doi.org/10.1053/gast.2002.33020. PMID: 11984522.
  78. Martínez-Chantar M.L., Vazquez-Chantada M., Garnacho M. et al. S-adenosylmethionine regulates cytoplasmic HuR via AMP-activated kinase. Gastroenterology. 2006; 131(1): 223–32. https://doi.org/10.1053/j.gastro.2006.04.019. PMID: 16831604.
  79. Sun L., Zhang J., Yang Q. et al. Synergistic effects of SAM and selenium compounds on proliferation, migration and adhesion of HeLa cells. Anticancer Res. 2017; 37(8): 4433–41. https://doi.org/10.21873/anticanres.11838. PMID: 28739737.
  80. Mroweh M., Roth G., Decaens T. et al. Targeting Akt in hepatocellular carcinoma and its tumor microenvironment. Int J Mol Sci. 2021; 22(4): 1794. https://doi.org/10.3390/ijms22041794. PMID: 33670268. PMCID: PMC7917860.
  81. Yang H., Sadda M.R., Li M. et al. S-adenosylmethionine and its metabolite induce apoptosis in HepG2 cells: Role of protein phosphatase 1 and Bcl-x(S). Hepatology. 2004; 40(1): 221–31. https://doi.org/10.1002/hep.20274. PMID: 15239106.
  82. Ou X., Yang H., Ramani K. et al. Inhibition of human betaine-homocysteine methyltransferase expression by S-adenosylmethionine and methylthioadenosine. Biochem J. 2007; 401(1): 87–96. https://doi.org/10.1042/BJ20061119. PMID: 16953798. PMCID: PMC1698693.
  83. Pascale R.M., Simile M.M., Calvisi D.F. et al. S-Adenosylmethionine: from the discovery of its inhibition of tumorigenesis to its use as a therapeutic agent. Cells. 2022; 11(3): 409. https://doi.org/10.3390/cells11030409. PMID: 35159219. PMCID: PMC8834208.
  84. Choi Y., Oh S.T., Won M.A. et al. Targeting ODC1 inhibits tumor growth through reduction of lipid metabolism in human hepatocellular carcinoma. Biochem Biophys Res Commun. 2016; 478(4): 1674–81. https://doi.org/10.1016/j.bbrc.2016.09.002. PMID: 27592554.
  85. Li T.W., Zhang Q., Oh P. et al. S-Adenosylmethionine and methylthioadenosine inhibit cellular FLICE inhibitory protein expression and induce apoptosis in colon cancer cells. Mol Pharmacol. 2009; 76(1): 192–200. https://doi.org/10.1124/mol.108.054411. PMID: 19372210. PMCID: PMC2701463.
  86. Ilisso C.P., Castellano M., Zappavigna S. et al. The methyl donor S-adenosylmethionine potentiates doxorubicin effects on apoptosis of hormone-dependent breast cancer cell lines. Endocrine. 2015; 50(1): 212–22. https://doi.org/10.1007/s12020-014-0484-7. PMID: 25577236.
  87. Persad R., Liu C., Wu T.T. et al. Overexpression of caspase-3 in hepatocellular carcinomas. Mod Pathol. 2004; 17(7): 861–67. https://doi.org/10.1038/modpathol.3800146. PMID: 15098015.
  88. Ding H., Wang Y., Zhang H. CCND1 silencing suppresses liver cancer stem cell differentiation and overcomes 5-Fluorouracil resistance in hepatocellular carcinoma. J Pharmacol Sci. 2020; 143(3): 219–25. https://doi.org/10.1016/j.jphs.2020.04.006. PMID: 32418739.
  89. Paturel A., Hall J., Chemin I. Poly(ADP-Ribose) Polymerase inhibition as a promising approach for hepatocellular carcinoma therapy. Cancers (Basel). 2022; 14(15): 3806. https://doi.org/10.3390/cancers14153806. PMID: 35954469. PMCID: PMC9367559.
  90. Liu D., Fan Y., Li J. et al. Inhibition of cFLIP overcomes acquired resistance to sorafenib via reducing ER stress-related autophagy in hepatocellular carcinoma. Oncol Rep. 2018; 40(4): 2206–14. https://doi.org/10.3892/or.2018.6606. PMID: 30066934.
  91. Schmidt T. S-Adenosylmethionine affects ERK1/2 and STAT3 pathway in androgen-independent prostate cancer cells. Mol Biol Rep. 2022; 49(6): 4805–17. https://doi.org/10.1007/s11033-022-07331-2. PMID: 35303200. PMCID: PMC9262802.
  92. Villa E., Piscaglia F., Geva R. et al. Phase IIa safety and efficacy of milciclib, a pan-cyclin dependent kinase inhibitor, in unresectable, sorafenib-refractory or -intolerant hepatocellular carcinoma patients. J Clin Oncol. 2020; 38(15_suppl): e16711. https://doi.org/10.1200/JCO.2020.38.15_suppl.e16711.
  93. Pivetti A., Di Marco L., Bristot L. et al. Safety and clinical activity of combination treatment with regorafenib and milciclib in liver transplant patients with hepatocellular carcinoma recurrence. J Clin Oncol. 2020; 38(15_suppl): e16634. https://doi.org/10.1200/JCO.2020.38.15_suppl.e16634.
  94. Krutsenko Y., Singhi A.D., Monga S.P. β-Catenin activation in hepatocellular cancer: Implications in biology and therapy. Cancers (Basel). 2021; 13(8): 1830. https://doi.org/10.3390/cancers13081830. PMID: 33921282. PMCID: PMC8069637.
  95. Ilisso C.P., Delle Cave D., Mosca L. et al. S-Adenosylmethionine regulates apoptosis and autophagy in MCF-7 breast cancer cells through the modulation of specific microRNAs. Cancer Cell Int. 2018; 18: 197. https://doi.org/10.1186/s12935-018-0697-6. PMID: 30533999. PMCID: PMC6278132.
  96. Fu J., Imani S., Wu M.Y., Wu R.C. MicroRNA-34 Family in cancers: Role, mechanism, and therapeutic potential. Cancers (Basel). 2023; 15(19): 4723. https://doi.org/10.3390/cancers15194723. PMID: 37835417. PMCID: PMC10571940.
  97. Youness R.A., El-Tayebi H.M., Assal R.A. et al. MicroRNA-486-5p enhances hepatocellular carcinoma tumor suppression through repression of IGF-1R and its downstream mTOR, STAT3 and c-Myc. Oncol Lett. 2016; 12(4): 2567–73. https://doi.org/10.3892/ol.2016.4914. PMID: 27698829. PMCID: PMC5038225.
  98. Ansorena E., García-Trevijano E.R., Martinez-Chantar M.L. et al. S-adenosylmethionine and methylthioadenosine are antiapoptotic in cultured rat hepatocytes but proapoptotic in human hepatoma cells. Hepatology. 2002; 35(2): 274–80. https://doi.org/10.1053/jhep.2002.30419. PMID: 11826399.
  99. Malakar D., Dey A., Basu A., Ghosh A.K. Antiapoptotic role of S-adenosyl-l-methionine against hydrochloric acid induced cell death in Saccharomyces cerevisiae. Biochim Biophys Acta. 2008; 1780(7–8): 937–47. https://doi.org/10.1016/j.bbagen.2008.03.014. PMID: 18445488.
  100. Cabrales-Romero M. del P., Márquez-Rosado L., Fattel-Fazenda S. et al. S-adenosyl-methionine decreases ethanol-induced apoptosis in primary hepatocyte cultures by a c-Jun N-terminal kinase activity-independent mechanism. World J Gastroenterol. 2006; 12(12): 1895–1904. https://doi.org/10.3748/wjg.v12.i12.1895. PMID: 16609996. PMCID: PMC4087515.
  101. Ouyang Y., Wu Q., Li J. et al. S-adenosylmethionine: A metabolite critical to the regulation of autophagy. Cell Prolif. 2020; 53(11): e12891. https://doi.org/10.1111/cpr.12891. PMID: 33030764. PMCID: PMC7653241.
  102. Gu X., Orozco J.M., Saxton R.A. et al. SAMTOR is an S-adenosylmethionine sensor for the mTORC1 pathway. Science. 2017; 358(6364): 813–18. https://doi.org/10.1126/science.aao3265. PMID: 29123071. PMCID: PMC5747364.
  103. Lai H.Y., Tsai H.H., Yen C.J. et al. Metformin resensitizes sorafenib-resistant HCC cells through AMPK-dependent autophagy activation. Front Cell Dev Biol. 2021; 8: 596655. https://doi.org/10.3389/fcell.2020.596655. PMID: 33681180. PMCID: PMC7931828.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. The main mechanisms of chemopreventive and antitumor activity of 8-adenosyl-I-methionine (SAM)

Download (1MB)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies