MicroRNA-1 and microRNA-133: Small molecules of great importance in the aspect of cardiovascular diseases

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Fundamental and clinical studies have clearly demonstrated the importance of microRNA (miRNA) in cell differentiation, growth, proliferation and apoptosis regulation. This effect of miRNA extends to the cardiovascular system as well. Experimental studies have shown the participation of miRNA both in the normal development of the heart and blood vessels, and in the formation of such pathological conditions as myocardial hypertrophy and its remodeling, circulatory failure. MiRNAs are involved in mobilization of progenitor cells and other supporting cells from the bone marrow into peripheral blood circulation, which is an important part in restoring heart function after ischemic damage. The presented literature review points at the potentially important diagnostic and prognostic value of miRNA-1 and miRNA-133 evaluation.

About the authors

Amina M. Aliyeva

N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia, Moscow

Email: amisha_alieva@mail.ru
ORCID iD: 0000-0001-5416-8579
SPIN-code: 2749-6427

PhD in Medical Sciences, associate professor of the Department of hospital therapy named after academician G.I. Storozhakov of the Faculty of general medicine, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia

Russian Federation, 117997, Moscow,1 Ostrovityanova Str.

Natalya V. Teplova

N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia, Moscow

Email: amisha_alieva@mail.ru

MD, professor, head of the Department of clinical pharmacology of the Faculty of general medicine, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia

Russian Federation, 117997, Moscow,1 Ostrovityanova Str.

Aleksey V. Butenko

Academician B.V. Petrovsky Russian Scientific Center of Surgery of the Ministry of Education and Science of Russia

Email: amisha_alieva@mail.ru

MD, professor, chief physician of the scientific and clinical Center No.2, Academician B.V. Petrovsky Russian Scientific Center of Surgery of the Ministry of Education and Science of Russia

Russian Federation, 117593, Moscow,1a Litovsky Boulevard

Evgeniy E. Averin

Academician B.V. Petrovsky Russian Scientific Center of Surgery of the Ministry of Education and Science of Russia

Email: amisha_alieva@mail.ru
ORCID iD: 0000-0002-6595-6471

MD, head of the scientific and educational Center of the scientific and clinical Center No.2, Academician B.V. Petrovsky Russian Scientific Center of Surgery of the Ministry of Education and Science of Russia

Russian Federation, 117593, Moscow,1a Litovsky Boulevard

Madina F. Akhmedova

AKFA Medline Clinic

Email: drmadina@yandex.ru

PhD in Medical Sciences, cardiologist at the Department of adult cardiac surgery, AKFA Medline Clinic

Uzbekistan, Tashkent

Yulia A. Shikhova

Academician B.V. Petrovsky Russian Scientific Center of Surgery of the Ministry of Education and Science of Russia, Moscow

Email: amisha_alieva@mail.ru
ORCID iD: 0000-0003-4688-4385

PhD in Medical Sciences, deputy chief physician for medical work of the scientific and clinical Center No. 2, Academician B.V. Petrovsky Russian Scientific Center of Surgery of the Ministry of Education and Science of Russia

Russian Federation, 117593, Moscow,1a Litovsky Boulevard

Ramiz K. Valiev

A.S. Loginov Moscow Clinical Research Center of the Department of Healthcare of Moscow

Email: radiosurgery@bk.ru
ORCID iD: 0000-0003-1613-3716
SPIN-code: 2855-2867

PhD in Medical Sciences, head of oncosurgical Department No. 2, A.S. Loginov Moscow Clinical Research Center of the Department of Healthcare of Moscow

Russian Federation, 111123, Moscow,86 Entuziastov Highway

Muhammetsakhet N. Sariyev

A.S. Loginov Moscow Clinical Research Center of the Department of Healthcare of Moscow

Email: mishamoff@gmail.com
ORCID iD: 0000-0003-1794-9258

oncologist at A.S. Loginov Moscow Clinical Research Center of the Department of Healthcare of Moscow

Russian Federation, 111123, Moscow,86 Entuziastov Highway

Irina A. Kotikova

N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia

Email: kotikova.ia@mail.ru
ORCID iD: 0000-0001-5352-8499
SPIN-code: 1423-7300

student of the Faculty of general medicine, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia

Russian Federation, 117997, Moscow,1 Ostrovityanova Str.

Igor G. Nikitin

N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia

Author for correspondence.
Email: igor.nikitin.64@mail.ru
ORCID iD: 0000-0003-1699-0881

MD, professor, head of the Department of hospital therapy named after academician G.I. Storozhakov of the Faculty of general medicine, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia

Russian Federation, 117997, Moscow,1 Ostrovityanova Str.

References

  1. Аушев В.Н. МикроРНК: малые молекулы с большим значением. Клиническая онкогематология. 2015; 8(1): 1–12. [Aushev V.N. MicroRNA: Small molecules of great significance. Klinicheskaya onkogematologiya = Clinical Oncohematology. 2015; 8(1): 1–12 (In Russ.)]. EDN: TVXUXD.
  2. Алиева А.М., Теплова Н.В., Кисляков В.А. с соавт. Биомаркеры в кардиологии: микроРНК и сердечная недостаточность. Терапия. 2022; 8(1): 60–70. [Alieva A.M., Teplova N.V., Kislyakov V.A. et al. Biomarkers in cardiology: microRNA and heart failure. Terapiya = Therapy. 2022; 8(1): 60–70 (In Russ)]. https://dx.doi.org/10.18565/therapy.2022.1.60-70. EDN: FKQBDC.
  3. Бейлерли О.А., Гареев И.Ф., Бейлерли А.Т. Микро-РНК как новые игроки в контроле функций гипоталамуса. Креативная хирургия и онкология. 2019; 9(2): 138–143. [Beylerli O.A., Gareev I.F., Beylerli A.T. Micro RNAs as new players in control of hypothalamic functions. Kreativnaya khirurgiya i onkologiya = Creative Surgery and Oncology. 2019; 9(2):138–143 (In Russ).]. https://dx.doi.org/10.24060/2076-3093-2019-9-2-138-143. EDN: WVZNJW.
  4. Zhipeng S., Rui G., Bo Y. Potential roles of microRNA-1 and microRNA-133 in cardiovascular disease. Rev Cardiovasc Med. 2020; 21(1): 57–64. https://dx.doi.org/10.31083/j.rcm.2020.01.577.
  5. Ouyang Z., Wei K. MiRNA in cardiac development and regeneration. Cell Regen. 2021; 10(1): 14. https://dx.doi.org/10.1186/s13619-021-00077-5.
  6. Kalayinia S., Arjmand F., Maleki M. et al. MicroRNAs: Roles in cardiovascular development and disease. Cardiovasc Pathol. 2021; 50: 107296. https://dx.doi.org/10.1016/j.carpath.2020.107296.
  7. Ромакина В.В., Жиров И.В., Насонова С.Н. с соавт. МикроРНК как биомаркеры сердечно-сосудистых заболеваний. Кардиология. 2018; 58(1): 66–71. [Romakina V.V., Zhirov I.V., Nasonova S.N. et al. MicroRNAs as biomarkers of cardiovascular diseases. Kardiologiya = Cardiology. 2018; 58(1): 66–71 (In Russ)]. https://dx.doi.org/10.18087/cardio.2018.1.10083.
  8. Ибрагимова А.Г., Шахмаева К.Р., Станишевская И.Е., Шиндяпина А.В. Потенциальная роль микроРНК при кальцинозе сосудов. Российский кардиологический журнал. 2019; 24(10): 118–125. [Ibragimova A.G., Shakhmaeva K.R., Stanishevskaya I.E., Shindyapina A.V. The potential role of miRNAs in calcification of cardiovascular diseases. Rossiyskiy kardiologicheskiy zhurnal = Russian Journal of Cardiology. 2019; 24(10): 118–125 (In Russ)]. https://dx.doi.org/10.15829/1560-4071-2019-10-118-125. EDN: CKVIOF.
  9. Lee G.K., Hsieh Y.P., Hsu S.W., Lan S.J. Exploring diagnostic and prognostic predictive values of microRNAs for acute myocardial infarction: A PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore). 2021; 100(29): e26627. https://dx.doi.org/10.1097/MD.0000000000026627.
  10. Lee R.C., Feinbaum R.L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993; 75(5): 843–54. https://dx.doi.org/10.1016/0092-8674(93)90529-y.
  11. Шакарьянц Г.А., Кожевникова М.В., Каплунова В.Ю. с соавт. Взгляд на гипертрофию миокарда с позиции транскриптомики и метаболомики. Кардиология. 2020; 60(4): 120–129. [Shakaryants G.A., Kozhevnikova M.V., Kaplunova V.Yu. et al. Focus on the myocardial hypertrophy from the perspective of transcriptomics and metabolomics. Kardiologiya = Cardiology. 2020; 60(4): 120–129 (In Russ.)]. https://dx.doi.org/10.18087/cardio.2020.4. n1063. EDN: OHATNB.
  12. Islas J.F., Moreno-Cuevas J.E. A microRNA perspective on cardiovascular development and diseases: An update. Int J Mol Sci. 2018; 19(7): 2075. https://dx.doi.org/10.3390/ijms19072075.
  13. Shi Q., Yang X. Circulating microRNA and long noncoding RNA as biomarkers of cardiovascular diseases. J Cell Physiol. 2016; 231(4): 751–55. https://dx.doi.org/10.1002/jcp.25174.
  14. Zhao Y., Ransom J.F., Li A. et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell. 2007; 129(2): 303–17. https://dx.doi.org/10.1016/j.cell.2007.03.030.
  15. Wu N., Gu T., Lu L. et al. Roles of miRNA-1 and miRNA-133 in the proliferation and differentiation of myoblasts in duck skeletal muscle. J Cell Physiol. 2019; 234(4): 3490–99. https://dx.doi.org/10.1002/jcp.26857.
  16. Chen J.F., Mandel E.M., Thomson J.M. et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 2006; 38(2): 228–33. https://dx.doi.org/10.1038/ng1725.
  17. Hagiwara S., Kantharidis P., Cooper M.E. MicroRNA as biomarkers and regulator of cardiovascular development and disease. Curr Pharm Des. 2014; 20(14): 2347–70. https://dx.doi.org/10.2174/13816128113199990495.
  18. Valkov N., King M.E., Moeller J. et al. MicroRNA-1-mediated inhibition of cardiac fibroblast proliferation through targeting cyclin D2 and CDK6. Front Cardiovasc Med. 2019; 6: 65. https://dx.doi.org/10.3389/fcvm.2019.00065.
  19. Zhang X.G., Wang L.Q., Guan H.L. Investigating the expression of miRNA-133 in animal models of myocardial infarction and its effect on cardiac function. Eur Rev Med Pharmacol Sci. 2019; 23(13): 5934–40. https://dx.doi.org/10.26355/eurrev_201907_18338.
  20. Werner J.H., Rosenberg J.H., Um J.Y. et al. Molecular discoveries and treatment strategies by direct reprogramming in cardiac regeneration. Transl Res. 2019; 203: 73–87. https://dx.doi.org/10.1016/j.trsl.2018.07.012.
  21. Cheng M., Yang J., Zhao X. et al. Circulating myocardial microRNAs from infarcted hearts are carried in exosomes and mobilise bone marrow progenitor cells. Nat Commun. 2019; 10(1): 959. https://dx.doi.org/10.1038/s41467-019-08895-7.
  22. Muraoka N., Yamakawa H., Miyamoto K. et al. MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures. EMBO J. 2014; 33(14): 1565–81. https://dx.doi.org/10.15252/embj.201387605.
  23. Nam Y.J., Song K., Luo X. et al. Reprogramming of human fibroblasts toward a cardiac fate. Proc Natl Acad Sci USA. 2013; 110(14): 5588–93. https://dx.doi.org/10.1073/pnas.1301019110.
  24. Christoforou N., Chakraborty S., Kirkton R.D. et al. Core transcription factors, microRNAs, and small molecules drive transdifferentiation of human fibroblasts towards the cardiac cell lineage. Sci Rep. 2017; 7: 40285. https://dx.doi.org/10.1038/srep40285.
  25. Pinchi E., Frati P., Aromatario M. et al. MiR-1, miR-499 and miR-208 are sensitive markers to diagnose sudden death due to early acute myocardial infarction. J Cell Mol Med. 2019; 23(9): 6005–16. https://dx.doi.org/10.1111/jcmm.14463.
  26. Ewelina K., Eljaszewicz A., Kazimierczyk R. et al. Altered microRNA dynamics in acute coronary syndrome. Postepy Kardiol Interwencyjnej. 2020; 16(3): 287–93. https://dx.doi.org/10.5114/aic.2020.99263.
  27. Ma Q., Ma Y., Wang X. et al. Circulating miR-1 as a potential predictor of left ventricular remodeling following acute ST-segment myocardial infarction using cardiac magnetic resonance. Quant Imaging Med Surg. 2020; 10(7): 1490–503. https://dx.doi.org/10.21037/qims-19-829.
  28. Coelho-Lima J., Mohammed A., Cormack S. et al. Kinetics analysis of circulating microRNAs unveils markers of failed myocardial reperfusion. Clin Chem. 2020; 66(1): 247–56. https://dx.doi.org/10.1373/clinchem.2019.308353.
  29. Полякова Е.А., Зарайский М.И., Беркович О.А. с соавт. Роль малых некодирующих РНК в патогенезе атеросклероза коронарных артерий. Трансляционная медицина. 2018; 5(3): 5–14. [Polyakova E.A., Zaraysky M.I., Berkovich O.A. et al. The role of small noncoding RNAS in the pathogenesis of coronary arteries atherosclerosis. Translyatsionnaya meditsina = Translational Medicine. 2018; 5(3): 5–14 (In Russ.)]. https://dx.doi.org/10.18705/2311-4495-2018-5-3-5-14. EDN: XZTRVR.
  30. Kaur A., Mackin S.T., Schlosser K. et al. Systematic review of microRNA biomarkers in acute coronary syndrome and stable coronary artery disease. Cardiovasc Res. 2020; 116(6): 1113–24. https://dx.doi.org/10.1093/cvr/cvz302.
  31. Danaii S., Shiri S., Dolati S. et al. The association between inflammatory cytokines and miRNAs with slow coronary flow phenomenon. Iran J Allergy Asthma Immunol. 2020; 19(1): 56–64. https://dx.doi.org/10.18502/ijaai. v19i1.2418.
  32. Trotta M.C., Ferraro B., Messina A. et al. Telmisartan cardioprotects from the ischaemic/hypoxic damage through a miR-1-dependent pathway. J Cell Mol Med. 2019; 23(10): 6635–45. https://dx.doi.org/10.1111/jcmm.14534.
  33. Care A., Catalucci D., Felicetti F. et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007; 13(5): 613–18. https://dx.doi.org/10.1038/nm1582.
  34. Ikeda S., He A., Kong S.W. et al. MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes. Mol Cell Biol. 2009; 29(8): 2193–204. https://dx.doi.org/10.1128/MCB.01222-08.
  35. Fathi M., Gharakhanlou R., Rezaei R. The Changes of Heart miR-1 and miR-133 Expressions following physiological hypertrophy due to endurance training. Cell J. 2020; 22(Suppl 1): 133–40. https://dx.doi.org/10.22074/cellj.2020.7014.
  36. Koval S., Snihurska I., Yushko K. et al. Plasma microrna-133а level in patients with essential arterial hypertension. Georgian Med News. 2019; (290): 52–59.
  37. Connolly M., Garfield B.E., Crosby A. et al. MiR-1-5p targets TGF-βR1 and is suppressed in the hypertrophying hearts of rats with pulmonary arterial hypertension. PLoS One. 2020; 15(2): e0229409. https://dx.doi.org/10.1371/journal.pone.0229409.
  38. Ибрагимова А.Г., Зубко А.В., Чудиновских Ю.А. с соавт. Изучение спектра микроРНК при гипертрофии миокарда у пациентов с обструктивной формой гипертрофической кардиомиопатии. Клиническая физиология кровообращения. 2014; (1): 21–25. [Ibragimova A.G., Zubko A.V., Chudinovskikh Yu.A. et al. Study of miRNAs in patients with hypertrophic obstructive cardiomyopathy. Klinicheskaya fiziologiya krovoobrashcheniya = Clinical Physiology of Blood Circulation. 2014; (1): 21–25 (In Russ.)]. EDN: SFAYAR.
  39. Gui Y., Li D., Chen J. et al. Soluble epoxide hydrolase inhibitors, t-AUCB, downregulated miR-133 in a mouse model of myocardial infarction. Lipids Health Dis. 2018; 17(1): 129. https://dx.doi.org/10.1186/s12944-018-0780-y.
  40. Gui Y.J., Yang T., Liu Q. et al. Soluble epoxide hydrolase inhibitors, t-AUCB, regulated microRNA-1 and its target genes in myocardial infarction mice. Oncotarget. 2017; 8(55): 94635–49. https://dx.doi.org/10.18632/oncotarget.21831.
  41. Liu Q., Zhao X., Peng R. et al. Soluble epoxide hydrolase inhibitors might prevent ischemic arrhythmias via microRNA-1 repression in primary neonatal mouse ventricular myocytes. Mol Biosyst. 2017; 13(3): 556–64. https://dx.doi.org/10.1039/c6mb00824k.
  42. Sun L., Sun S., Zeng S., Li Y., Pan W., Zhang Z. Expression of circulating microRNA-1 and microRNA-133 in pediatric patients with tachycardia. Mol Med Rep. 2015; 11(6): 4039–46. https://dx.doi.org/10.3892/mmr.2015.3246.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.

Download (67KB)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies