合成少数超采样技术提高性别鉴定准确性的潜力: 利用头颅测量学对人工神经网络的研究

封面

如何引用文章

详细

论证。在使用人工神经网络创建模型时,有必要考虑训练数据的数量及其分布,尤其是在预测性别时。

研究目的是确定合成少数超采样技术(synthetic minority oversampling technique, SMOTE)在使用人工神经网络确定死者性别方面的潜在有效性。

材料和方法。本研究使用的数据集包括对印度尼西亚患者(229 名女性和 68 名男性)进行的297次头颅测量。WebCeph 软件用于测量某些参数,如 SNA 角(Sella-Nation-Point A)、 下颌长度、下颌角、SGA 角(Sella-Glabella-Point A)和诊断。数据处理和人工神经网络的创建使用 Python 编程语言进行。

结果。使用人工神经网络进行性别鉴定的准确率为:女性 87%,男性 0%(平均 78%)。当使用 SMOTE 算法时,性别确定的准确率为 22%(女性为 0%,男性为 37%)。然而,当 SMOTE 算法与数据归一化结合使用时,准确率提高到 71%(女性为 82%,男性为 30%)。在不使用 SMOTE 算法的情况下,使用数据归一化的模型准确率为 76%(女性为 86%,男性为 14%)。

结论。这项研究证明了 SMOTE 在改进男性矩阵分类方面的有效性。然而,与不使用 SMOTE 和数据归一化的结果相比,总体准确度结果还不够理想。为了在使用人工神经网络和其他参数时实现性别确定的最佳精度,需要应用数据平衡策略。

作者简介

Vitria Wuri Handayani

Universitas Airlangga; Pontianak Polytechnic Health Ministry

Email: vitriawuri@gmail.com
ORCID iD: 0000-0002-5076-0118

MD, Medical Faculty; Nursing Department

印度尼西亚, Surabaya; Pontianak

Ahmad Yudianto

Universitas Airlangga

编辑信件的主要联系方式.
Email: ahmad-yudianto@fk.unair.ac.id
ORCID iD: 0000-0003-4754-768X

MD, PhD, Professor, Department of Forensics and Medicolegal, Faculty of Medicine; Magister of Forensic Sciences, Postgraduate School

印度尼西亚, Surabaya

MAR Mieke Sylvia

Univesitas Airlangga

Email: mieke-s-m-a-r@fkg.unair.ac.id
ORCID iD: 0000-0001-8821-0157

MD, PhD, Professor, Forensic Odontology Department, Dental Medical Faculty

印度尼西亚, Surabaya

Rulaningtyas Riries

Universitas Airlangga

Email: riries-r@fst.unair.ac.id
ORCID iD: 0000-0001-7058-1566

MD, Physics Department, Sains and Technology Faculty; Biomedical Department, Sains and Technology Faculty

印度尼西亚, Surabaya

Muhammad Rasyad Caesarardhi

Institut Teknologi Sepuluh Nopember

Email: mrasyadc@gmail.com
ORCID iD: 0000-0002-6986-0346

MD, Department of Information Systems

印度尼西亚, Surabaya

Ramadhan Putra

Universitas Airlangga

Email: ramadhan.hardani@fkg.unair.ac.id
ORCID iD: 0000-0002-0622-3892

MD, Department of Dentomaxillofacial Radiology, Faculty of Dental Medicine

印度尼西亚, Surabaya

参考

  1. Tahir H. Book of abstracts: The 4th Indonesia International Symposium of Forensic Odontology "Incorporating recent advances and new technologies for delivering good evidence in forensic odontology". Amerta Media; 2023. P. 45.
  2. Subramanian AK, Chen Y, Almalki A, et al. Cephalometric analysis in orthodontics using artificial intelligence: A comprehensive review. Biomed Res Int. 2022;2022:1880113. EDN: VCAUJB doi: 10.1155/2022/1880113
  3. Ruth MS. Sefalometri radiografi dasar. Surabaya: Sagung Seto; 2013.
  4. Indra Sukmana B, Rijaldi F. Buku Ajar Kedokteran Gigi Forensik [Internet]. Vol. VI. 2022. P. 1–79. Available from: https://idndentist.com/article/93
  5. Taner L, Gursoy G, Uzuner F. Does gender have an effect on craniofacial measurements? Turkish J Orthod. 2019;32(2):59–64. doi: 10.5152/TurkJOrthod.2019.18031
  6. Patil V, Vineetha R, Vatsa S, et al. Artificial neural network for gender determination using mandibular morphometric parameters: A comparative retrospective study. Cogent Eng. 2020;7(1):1–12. doi: 10.1080/23311916.2020.1723783
  7. Chen M, Chalita U, Saad W, et al. Artificial neural networks-based machine learning for wireless networks: A tutorial. IEEE Commun Surv Tutorials. 2019;21(4):3039–3071. doi: 10.1109/COMST.2019.2926625
  8. Dastres R, Soori M. Artificial neural network systems. Int J Imaging Robot. 2021;2021(2):13–25.
  9. Da Silva IN, Hernane SD, Andrade FR, et al. Artificial neural networks: A practical course. Springer Nature: Switzerland; 2017. 252 р.
  10. Wu Y, Feng J. Development and application of artificial neural network. Wirel Pers Commun. 2018;102(5):1645–1656. doi: 10.1007/s11277-017-5224-x
  11. Elreedy D, Atiya AF, Kamalov F. A theoretical distribution analysis of synthetic minority oversampling technique (SMOTE) for imbalanced learning. Mach Learn. 2023;113(7):4903–4923. EDN: KFIOLR doi: 10.1007/s10994-022-06296-4
  12. Handayani V, Yudianto A, Mieke Sylvia MAR, Rulaningtyas R. Classification of Indonesian adult forensic gender using cephalometric radiography with VGG16 and VGG19: A preliminary research. Acta Odontol Scand. 2024;(83):308–316. doi: 10.2340/aos.v83.40476
  13. Handayani VW. Cephalometry radiology based on rrtificial intelligence model for predict gender determination in unidentified cranium. Universitas Airlangga; 2024.
  14. Hapsari RK, Miswanto M, Rulaningtyas R, et al. Modified gray-level haralick texture features for early detection of diabetes mellitus and high cholesterol with iris image. Int J Biomed Imaging. 2022;2022:5336373. EDN: BVEODY doi: 10.1155/2022/5336373
  15. Satish BN, Moolrajani C, Basnaker M, Kumar P. Dental sex dimorphism: Using odontometrics and digital jaw radiography. J Forensic Dent Sci. 2017;9(1):43. doi: 10.4103/jfo.jfds_78_15
  16. Arab MA, Khankeh HR, Mosadeghrad AM, Farrokhi M. Developing a hospital disaster risk management evaluation model. Risk Manag Healthc Policy. 2019;(12):287–296. doi: 10.2147/RMHP.S215444
  17. Vahanwala S. Assessment of the effect of dimensions of the mandibular ramus and mental foramen on age and gender using digital panoramic radiographs: A retrospective study. Contemp Clin Dent. 2019;9(3):343–348. doi: 10.4103/ccd.ccd_26_18
  18. Tahir H. Book of abstracts: The 4th Indonesia International Symposium of Forensic Odontology "Incorporating recent advances and new technologies for delivering good evidence in forensic odontology". Amerta Media; 2023. P. 36–37.
  19. Bao H, Zhang K, Yu C, et al. Evaluating the accuracy of automated cephalometric analysis based on artificial intelligence. BMC Oral Health. 2023;23(1):191. doi: 10.1186/s12903-023-02881-8
  20. Ramezanzade S, Laurentiu T, Bakhshandah A, et al. The efficiency of artificial intelligence methods for finding radiographic features in different endodontic treatments: A systematic review. Acta Odontol Scand. 2022;81(6):422–435. doi: 10.1080/00016357.2022.2158929
  21. Shung KP. Accuracy, precision, recall or F1? [Internet]. Towards Data Science. 2018 [cited 2023 Sep 2]. Available from: https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9. Accessed: 15.04.2024.
  22. Jeong SH, Yun JP, Yeom HG, et al. Deep learning based discrimination of soft tissue profiles requiring orthognathic surgery by facial photographs. Sci Rep. 2020;10(1):16235. doi: 10.1038/s41598-020-73287-7
  23. Elreedy D, Atiya AF. A comprehensive analysis of Synthetic Minority Oversampling Technique (SMOTE) for handling class imbalance. Inf Sci (Ny). 2019;(505):32–64. doi: 10.1016/j.ins.2019.07.070
  24. Duan F, Zhang S, Yan Y, Cai Z. An oversampling method of unbalanced data for mechanical fault diagnosis based on meanradius-SMOTE. Sensors. 2022;22(14):5166. EDN: PURYZO doi: 10.3390/s22145166
  25. Zhang K, Zhang Y, Wang M. A unified approach to interpreting model predictions scott. Nips. 2012;16(3):426–430. doi: 10.48550/arXiv.1705.07874
  26. Sikka A, Jain A. Sex determination of mandible: A morphological and morphometric analysis. Int J Contemp Med Res. 2016;3(7):1869–1872.
  27. Smart Energy and Electric Power Systems [Internet]. Pavithra V, Jayalakshmi V. Smart energy and electric power system: Current trends and new intelligent perspectives and introduction to ai and power system. Elsevier; 2023. Р. 19–36. doi: 10.1016/B978-0-323-91664-6.00001-2
  28. Fan DP, Zhang J, Xu G, et al. Salient objects in clutter. IEEE Trans Pattern Anal Mach Intell. 2023;45(2):2344–2366. doi: 10.1109/TPAMI.2022.3166451

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Analysis of cephalometric parameters using the front-end web application [13].

下载 (192KB)
3. Fig. 2. Graph of the success of the training and validation of ANN: a — training and validation accuracy without SMOTE and normalization; b — training and validation accuracy with SMOTE and without normalization; c — training and validation accuracy with SMOTE and normalization; d — training and validation accuracy with normalization and without SMOTE.

下载 (232KB)
4. Fig. 3. Graph of the failure of the training and validation of ANN: a — training and validation loss without SMOTE and normalization; b — training and validation loss with SMOTE and without normalization; c — training and validation loss with SMOTE and normalization; d — training and validation loss with normalization and without SMOTE.

下载 (156KB)
5. Fig. 4. SHapley Additive exPlanation values attribute to each feature the change in the expected model prediction when conditioning on that feature.

下载 (98KB)

版权所有 © Eco-Vector, 2024

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。
##common.cookie##