The potential of synthetic minority oversampling technique to enhance the precision of gender prediction: an investigation of artificial neural networks with cephalometry

Cover Page

Cite item

Abstract

BACKGROUND: When creating models utilizing artificial neural networks, the quantity of training data and the distribution of data need to be considered, particularly when making gender predictions.

AIM: This study seeks to determine the potential impact of using the synthetic minority oversampling technique (SMOTE) on gender prediction using the artificial neural networks model.

MATERIALS AND METHODS: The current study utilized a dataset consisting of 297 cephalometric measurements from Indonesian patients, comprising 229 samples from females and 68 samples from males. WebCeph is used to measure certain parameters, such as Sella-Nation-Point A (SNA) angle, mandibular length, mandibular angle, Sella-Glabella-Point A (SGA) angle, and diagnosis. Data processing and artificial neural networks model creation were conducted using Python.

RESULTS: The gender identification accuracy of the artificial neural networks model is 87% for females and 0% for males, resulting in an overall average accuracy of 78%. When using SMOTE, the accuracy is 22%, with 0% for females and 37% for males. However, when using SMOTE and normalization, the accuracy increases to 71%, with 82% for females and 30% for males. The accuracy of normalization without SMOTE is 76%, with 86% for females and 14% for males.

CONCLUSIONS: This research has proven the efficacy of SMOTE in improving the classification of male matrices. Nevertheless, this study reveals that the overall accuracy results of SMOTE are suboptimal in comparison to the absence of SMOTE and normalization. The application of data balancing strategies is necessary to achieve optimal accuracy in gender prediction when artificial neural networks, and other parameters must be applied.

About the authors

Vitria Wuri Handayani

Universitas Airlangga; Pontianak Polytechnic Health Ministry

Email: vitriawuri@gmail.com
ORCID iD: 0000-0002-5076-0118

MD, Medical Faculty; Nursing Department

Indonesia, Surabaya; Pontianak

Ahmad Yudianto

Universitas Airlangga

Author for correspondence.
Email: ahmad-yudianto@fk.unair.ac.id
ORCID iD: 0000-0003-4754-768X

MD, PhD, Professor, Department of Forensics and Medicolegal, Faculty of Medicine; Magister of Forensic Sciences, Postgraduate School

Indonesia, Surabaya

MAR Mieke Sylvia

Univesitas Airlangga

Email: mieke-s-m-a-r@fkg.unair.ac.id
ORCID iD: 0000-0001-8821-0157

MD, PhD, Professor, Forensic Odontology Department, Dental Medical Faculty

Indonesia, Surabaya

Rulaningtyas Riries

Universitas Airlangga

Email: riries-r@fst.unair.ac.id
ORCID iD: 0000-0001-7058-1566

MD, Physics Department, Sains and Technology Faculty; Biomedical Department, Sains and Technology Faculty

Indonesia, Surabaya

Muhammad Rasyad Caesarardhi

Institut Teknologi Sepuluh Nopember

Email: mrasyadc@gmail.com
ORCID iD: 0000-0002-6986-0346

MD, Department of Information Systems

Indonesia, Surabaya

Ramadhan Putra

Universitas Airlangga

Email: ramadhan.hardani@fkg.unair.ac.id
ORCID iD: 0000-0002-0622-3892

MD, Department of Dentomaxillofacial Radiology, Faculty of Dental Medicine

Indonesia, Surabaya

References

  1. Tahir H. Book of abstracts: The 4th Indonesia International Symposium of Forensic Odontology "Incorporating recent advances and new technologies for delivering good evidence in forensic odontology". Amerta Media; 2023. P. 45.
  2. Subramanian AK, Chen Y, Almalki A, et al. Cephalometric analysis in orthodontics using artificial intelligence: A comprehensive review. Biomed Res Int. 2022;2022:1880113. EDN: VCAUJB doi: 10.1155/2022/1880113
  3. Ruth MS. Sefalometri radiografi dasar. Surabaya: Sagung Seto; 2013.
  4. Indra Sukmana B, Rijaldi F. Buku Ajar Kedokteran Gigi Forensik [Internet]. Vol. VI. 2022. P. 1–79. Available from: https://idndentist.com/article/93
  5. Taner L, Gursoy G, Uzuner F. Does gender have an effect on craniofacial measurements? Turkish J Orthod. 2019;32(2):59–64. doi: 10.5152/TurkJOrthod.2019.18031
  6. Patil V, Vineetha R, Vatsa S, et al. Artificial neural network for gender determination using mandibular morphometric parameters: A comparative retrospective study. Cogent Eng. 2020;7(1):1–12. doi: 10.1080/23311916.2020.1723783
  7. Chen M, Chalita U, Saad W, et al. Artificial neural networks-based machine learning for wireless networks: A tutorial. IEEE Commun Surv Tutorials. 2019;21(4):3039–3071. doi: 10.1109/COMST.2019.2926625
  8. Dastres R, Soori M. Artificial neural network systems. Int J Imaging Robot. 2021;2021(2):13–25.
  9. Da Silva IN, Hernane SD, Andrade FR, et al. Artificial neural networks: A practical course. Springer Nature: Switzerland; 2017. 252 р.
  10. Wu Y, Feng J. Development and application of artificial neural network. Wirel Pers Commun. 2018;102(5):1645–1656. doi: 10.1007/s11277-017-5224-x
  11. Elreedy D, Atiya AF, Kamalov F. A theoretical distribution analysis of synthetic minority oversampling technique (SMOTE) for imbalanced learning. Mach Learn. 2023;113(7):4903–4923. EDN: KFIOLR doi: 10.1007/s10994-022-06296-4
  12. Handayani V, Yudianto A, Mieke Sylvia MAR, Rulaningtyas R. Classification of Indonesian adult forensic gender using cephalometric radiography with VGG16 and VGG19: A preliminary research. Acta Odontol Scand. 2024;(83):308–316. doi: 10.2340/aos.v83.40476
  13. Handayani VW. Cephalometry radiology based on rrtificial intelligence model for predict gender determination in unidentified cranium. Universitas Airlangga; 2024.
  14. Hapsari RK, Miswanto M, Rulaningtyas R, et al. Modified gray-level haralick texture features for early detection of diabetes mellitus and high cholesterol with iris image. Int J Biomed Imaging. 2022;2022:5336373. EDN: BVEODY doi: 10.1155/2022/5336373
  15. Satish BN, Moolrajani C, Basnaker M, Kumar P. Dental sex dimorphism: Using odontometrics and digital jaw radiography. J Forensic Dent Sci. 2017;9(1):43. doi: 10.4103/jfo.jfds_78_15
  16. Arab MA, Khankeh HR, Mosadeghrad AM, Farrokhi M. Developing a hospital disaster risk management evaluation model. Risk Manag Healthc Policy. 2019;(12):287–296. doi: 10.2147/RMHP.S215444
  17. Vahanwala S. Assessment of the effect of dimensions of the mandibular ramus and mental foramen on age and gender using digital panoramic radiographs: A retrospective study. Contemp Clin Dent. 2019;9(3):343–348. doi: 10.4103/ccd.ccd_26_18
  18. Tahir H. Book of abstracts: The 4th Indonesia International Symposium of Forensic Odontology "Incorporating recent advances and new technologies for delivering good evidence in forensic odontology". Amerta Media; 2023. P. 36–37.
  19. Bao H, Zhang K, Yu C, et al. Evaluating the accuracy of automated cephalometric analysis based on artificial intelligence. BMC Oral Health. 2023;23(1):191. doi: 10.1186/s12903-023-02881-8
  20. Ramezanzade S, Laurentiu T, Bakhshandah A, et al. The efficiency of artificial intelligence methods for finding radiographic features in different endodontic treatments: A systematic review. Acta Odontol Scand. 2022;81(6):422–435. doi: 10.1080/00016357.2022.2158929
  21. Shung KP. Accuracy, precision, recall or F1? [Internet]. Towards Data Science. 2018 [cited 2023 Sep 2]. Available from: https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9. Accessed: 15.04.2024.
  22. Jeong SH, Yun JP, Yeom HG, et al. Deep learning based discrimination of soft tissue profiles requiring orthognathic surgery by facial photographs. Sci Rep. 2020;10(1):16235. doi: 10.1038/s41598-020-73287-7
  23. Elreedy D, Atiya AF. A comprehensive analysis of Synthetic Minority Oversampling Technique (SMOTE) for handling class imbalance. Inf Sci (Ny). 2019;(505):32–64. doi: 10.1016/j.ins.2019.07.070
  24. Duan F, Zhang S, Yan Y, Cai Z. An oversampling method of unbalanced data for mechanical fault diagnosis based on meanradius-SMOTE. Sensors. 2022;22(14):5166. EDN: PURYZO doi: 10.3390/s22145166
  25. Zhang K, Zhang Y, Wang M. A unified approach to interpreting model predictions scott. Nips. 2012;16(3):426–430. doi: 10.48550/arXiv.1705.07874
  26. Sikka A, Jain A. Sex determination of mandible: A morphological and morphometric analysis. Int J Contemp Med Res. 2016;3(7):1869–1872.
  27. Smart Energy and Electric Power Systems [Internet]. Pavithra V, Jayalakshmi V. Smart energy and electric power system: Current trends and new intelligent perspectives and introduction to ai and power system. Elsevier; 2023. Р. 19–36. doi: 10.1016/B978-0-323-91664-6.00001-2
  28. Fan DP, Zhang J, Xu G, et al. Salient objects in clutter. IEEE Trans Pattern Anal Mach Intell. 2023;45(2):2344–2366. doi: 10.1109/TPAMI.2022.3166451

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Analysis of cephalometric parameters using the front-end web application [13].

Download (192KB)
3. Fig. 2. Graph of the success of the training and validation of ANN: a — training and validation accuracy without SMOTE and normalization; b — training and validation accuracy with SMOTE and without normalization; c — training and validation accuracy with SMOTE and normalization; d — training and validation accuracy with normalization and without SMOTE.

Download (232KB)
4. Fig. 3. Graph of the failure of the training and validation of ANN: a — training and validation loss without SMOTE and normalization; b — training and validation loss with SMOTE and without normalization; c — training and validation loss with SMOTE and normalization; d — training and validation loss with normalization and without SMOTE.

Download (156KB)
5. Fig. 4. SHapley Additive exPlanation values attribute to each feature the change in the expected model prediction when conditioning on that feature.

Download (98KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies