自杀过程中神经元环境的形态及功能变化

封面

如何引用文章

全文:

详细

多年来,自杀行为的发展一直是一个热门话题。每年关于脑组织存在新形态变化的报告越来越多,并且考虑微环境对神经元功能活动的变化和影响,以及与某些精神疾病发展的关系。形态变化不一定很明显,也不一定很明确,所以人们考虑将胶质纤维酸性蛋白(GFAP)的免疫组化检测作为一种补充诊断方法。

这篇分析文献综述涉及自杀中小胶质细胞、星形胶质细胞、少突胶质细胞和血脑屏障的形态研究的状况。根据综合数据,自杀行为发展过程中最具代表性的局部变化是由中缝核、前额叶皮层和前扣带回皮层决定的。一些证据表明,自杀行为的发展与前额叶皮层中炎症细胞因子的增加、前扣带回皮层中星形胶质细胞和少突胶质细胞之间的交流受损相关,并表明壳核、纹状体、楔前叶和楔叶、眶额皮层参与自杀行为的形成。

确定自杀死亡的特有形态学有可能为确认或排除死因评估中的自杀发展因素提供证据基础。

需要进一步研究,以便更清楚地了解法医鉴定实践中的变化,并且免疫组化分析被认为是了解自杀因素的潜在证据基础。

作者简介

Maxim A. Kislov

I.M. Sechenov First Moscow State Medical Univesity; Moscow State Regional University

Email: kislov@1msmu.ru
ORCID iD: 0000-0002-9303-7640
SPIN 代码: 3620-8930

MD, Dr. Sci. (Med.), Professor

俄罗斯联邦, Moscow; Mytishchi

Daria S. Trusova

I.M. Sechenov First Moscow State Medical Univesity

编辑信件的主要联系方式.
Email: trusova_d_s@student.sechenov.ru
ORCID iD: 0000-0002-9062-8031
SPIN 代码: 6906-9238
Scopus 作者 ID: 57484068400
俄罗斯联邦, Moscow

Konstantin N. Krupin

I.M. Sechenov First Moscow State Medical Univesity; Scientific Research Laboratory of Human Morphology

Email: krupin@1msmu.ru
ORCID iD: 0000-0001-6999-8524
SPIN 代码: 1761-8559

MD, Cand. Sci. (Med.)

俄罗斯联邦, Moscow; Samara

Marianna S. Zhiganova

I.M. Sechenov First Moscow State Medical Univesity

Email: zhiganova.marianna@yandex.ru
ORCID iD: 0000-0003-1741-4229
SPIN 代码: 3031-8173
俄罗斯联邦, Moscow

Aleksandr V. Maksimov

Moscow State Regional University

Email: mcsim2004@inbox.ru
ORCID iD: 0000-0003-1936-4448
SPIN 代码: 3134-8457

MD, Dr. Sci. (Med), Assistant Professor

俄罗斯联邦, Mytishchi

参考

  1. World Health Organization [Internet]. Suicide [cited 17 June 2021]. Available from: https://www.who.int/news-room/fact-sheets/detail/suicide. Accessed: 17.09.2022.
  2. Chesney E, Goodwin GM, Fazel S. Risks of all-cause and suicide mortality in mental disorders: a meta-review. World Psychiatry. 2014;13(2):153–160. doi: 10.1002/WPS.20128
  3. Vahid-Ansari F, Albert PR. Rewiring of the serotonin system in major depression. Front Psychiatry. 2021;12:802581. doi: 10.3389/fpsyt.2021.802581
  4. Lutz PE, Mechawar N, Turecki G. Neuropathology of suicide: recent findings and future directions. Mol Psychiatry. 2017;22(10):1395–1412. doi: 10.1038/mp.2017.141
  5. Ginhoux F, Prinz M. Origin of microglia : current concepts and past controversies. Cold Spring Harb Perspect Biol. 2015:7(8):a020537. doi: 10.1101/cshperspect.a020537
  6. Butovsky O, Siddiqui S, Gabriely G, et al. Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS. J Clin Invest. 2012;122(9):3063–3087. doi: 10.1172/JCI62636
  7. Rangaraju S, Raza SA, Li NX, et al. Differential phagocytic properties of CD45low microglia and CD45high brain mononuclear phagocytes-activation and age-related effects. Front Immunol. 2018;(9):405. doi: 10.3389/fimmu.2018.00405
  8. Courtet P, Giner L, Seneque M, et al. Neuroinflammation in suicide: Toward a comprehensive model. World J Biol Psychiatry. 2016;17(8):564–586. doi: 10.3109/15622975.2015.1054879
  9. Mccarty MF, Lerner A. Expert review of neurotherapeutics the second phase of brain trauma can be controlled by nutraceuticals that suppress DAMP-mediated microglial activation. Expert Rev Neurother. 2021;21(5):559–570. doi: 10.1080/14737175.2021.1907182
  10. Steiner J, Walter M, Gos T, et al. Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: Evidence for an immune-modulated glutamatergic neurotransmission ? J Neuroinflammation. 2011;(8):94. doi: 10.1186/1742-2094-8-94
  11. Baharikhoob P, Kolla NJ. Microglial dysregulation and suicidality: a stress-diathesis perspective. Front Psychiatry. 2020;11:781. doi: 10.3389/FPSYT.2020.00781
  12. Brisch R, Steiner J, Mawrin C, et al. Microglia in the dorsal raphe nucleus plays a potential role in both suicide facilitation and prevention in affective disorders. Eur Arch Psychiatry Clin Neurosci. 2017;267(5):403–415. doi: 10.1007/S00406-017-0774-1
  13. Brisch R, Wojtylak S, Saniotis A, et al. The role of microglia in neuropsychiatric disorders and suicide. Eur Arch Psychiatry Clin Neurosci. 2022;272(6):929–945. doi: 10.1007/S00406-021-01334-Z
  14. Krzyżanowska M, Rębała K, Steiner J, et al. Reduced ribosomal DNA transcription in the prefrontal cortex of suicide victims: consistence of new molecular RT-qPCR findings with previous morphometric data from AgNOR-stained pyramidal neurons. Eur Arch Psychiatry Clin Neurosci. 2021;271(3):567–576. doi: 10.1007/S00406-021-01232-4
  15. Torres-Platas SG, Cruceanu C, Chen GG, et al. Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides. Brain Behav Immun. 2014;42:50–59. doi: 10.1016/j.bbi.2014.05.007
  16. Kim R, Healey KL, Sepulveda-Orengo MT, Reissner KJ. Astroglial correlates of neuropsychiatric disease: From astrocytopathy to astrogliosis. Prog Neuro-Psychopharmacology Biol Psychiatry. 2018;87(Pt A):126–146. doi: 10.1016/j.pnpbp.2017.10.002
  17. Torres-Platas SG, Hercher C, Davoli MA, et al. Astrocytic hypertrophy in anterior cingulate white matter of depressed suicides. Neuropsychopharmacology. 2011;36(13):2650–2658. doi: 10.1038/NPP.2011.154
  18. Oudega ML, Siddiqui A, Wattjes MP, et al. Are apathy and depressive symptoms related to vascular white matter hyperintensities in severe late life depression? J Geriatr Psychiatry Neurol. 2021;34(1):21–28. doi: 10.1177/0891988720901783
  19. Grangeon MC, Seixas C, Quarantini LC, et al. White matter hyperintensities and their association with suicidality in major affective disorders: A meta-analysis of magnetic resonance imaging studies. CNS Spectr. 2010;15(6):375–381. doi: 10.1017/s1092852900029242
  20. Sachs-Ericsson N, Hames JL, Joiner TE, et al. Differences between suicide attempters and nonattempters in depressed older patients: depression severity, white-matter lesions, and cognitive functioning. Am J Geriatr Psychiatry. 2014;22(1):75–85. doi: 10.1016/J.JAGP.2013.01.063
  21. Lin C, Huang CM, Karim HT, et al. Greater white matter hyperintensities and the association with executive function in suicide attempters with late-life depression. Neurobiol Aging. 2021;103:60–67. doi: 10.1016/j.neurobiolaging.2020.12.016
  22. Enache D, Pariante CM, Mondelli V. Markers of central inflammation in major depressive disorder: a systematic review and meta-analysis of studies examining cerebrospinal fluid, positron emission tomography and post-mortem brain tissue. Brain Behav Immun. 2019;81:24–40. doi: 10.1016/j.bbi.2019.06.015
  23. Cobb JA, O’Neill K, Milner J, et al. Density of GFAP-immunoreactive astrocytes is decreased in left hippocampi in major depressive disorder. Neuroscience. 2016;316:209–220. doi: 10.1016/j.neuroscience.2015.12.044
  24. O’Leary LA, Belliveau C, Davoli MA, et al. Widespread decrease of cerebral vimentin-immunoreactive astrocytes in depressed suicides. Front Psychiatry. 2021;12:640963. doi: 10.3389/fpsyt.2021.640963
  25. Sacchet MD, Gotlib IH. Myelination of the brain in major depressive disorder: An in vivo quantitative magnetic resonance imaging study. Sci Rep. 2017;7(1):2200. doi: 10.1038/S41598-017-02062-Y
  26. Kumar A, Gupta RC, Thomas MA, et al. Biophysical changes in normal-appearing white matter and subcortical nuclei in late-life major depression detected using magnetization transfer. Psychiatry Res. 2004;130(2):131–140. doi: 10.1016/J.PSCYCHRESNS.2003.12.002
  27. Chandley MJ, Szebeni A, Szebeni K, et al. Markers of elevated oxidative stress in oligodendrocytes captured from the brainstem and occipital cortex in major depressive disorder and suicide. Prog Neuropsychopharmacology Biol Psychiatry. 2022;(117):110559. doi: 10.1016/J.PNPBP.2022.110559
  28. Cheli VT, Correale J, Paez PM, Pasquini JM. Iron metabolism in oligodendrocytes and astrocytes, implications for myelination and remyelination. ASN Neuro. 2020;12:1759091420962681. doi: 10.1177/1759091420962681
  29. Hamidi M, Drevets WC, Price JL. Glial reduction in amygdala in major depressive disorder is due to oligodendrocytes. Biol Psychiatry. 2004;55(6):563–569. doi: 10.1016/j.biopsych.2003.11.006
  30. Maheu M, Lopez JP, Crapper L, et al. MicroRNA regulation of central glial cell line-derived neurotrophic factor (GDNF) signalling in depression. Transl Psychiatry. 2015;5(2):e511. doi: 10.1038/TP.2015.11
  31. Bayard-Burfield L, Alling C, Blennow K, et al. Impairment of the blood-CSF barrier in suicide attempters. Eur Neuropsychopharmacol. 1996;6(3):195–199. doi: 10.1016/0924-977x(96)00020-x
  32. Ventorp F, Bay-richter C, Sauro A, et al. The CD44 ligand hyaluronic acid is elevated in the cerebrospinal fl uid of suicide attempters and is associated with increased blood–brain barrier permeability. J Affect Disord. 2016;193:349–354. doi: 10.1016/j.jad.2015.12.069
  33. Tra L, Westrin А. Six autoantibodies associated with autoimmune encephalitis are not detectable in the cerebrospinal fluid of suicide attempters. PLoS One. 2017;12(4):e0176358. doi: 10.1371/journal.pone.0176358
  34. Wisłowska-Stanek A, Kołosowska K, Maciejak P. Neurobiological basis of increased risk for suicidal behaviour. Cells. 2021;10(10):2519. doi: 10.3390/cells10102519
  35. Matthews PR, Harrison PJ. A morphometric, immunohistochemical, and in situ hybridization study of the dorsal raphe nucleus in major depression, bipolar disorder, schizophrenia, and suicide. J Affect Disord. 2012;137(1-3):125–134. doi: 10.1016/J.JAD.2011.10.043
  36. Steiner J, Walter M, Gos T, et al. Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: Evidence for an immune-modulated glutamatergic neurotransmission? J Neuroinflammation. 2011;8:94. doi: 10.1186/1742-2094-8-94
  37. Fullana N, Gasull-Camós J, Tarrés-Gatius M, et al. Astrocyte control of glutamatergic activity: downstream effects on serotonergic function and emotional behavior. Neuropharmacology. 2020;(166):107914. doi: 10.1016/j.neuropharm.2019.107914
  38. Ogyu K, Kubo K, Noda Y, et al. Kynurenine pathway in depression: A systematic review and meta-analysis. Neurosci Biobehav Rev. 2018;(90):16–25. doi: 10.1016/J.NEUBIOREV.2018.03.023
  39. Brites D, Fernandes A. Neuroinflammation and depression: Microglia activation, extracellular microvesicles and microRNA dysregulation. Front Cell Neurosci. 2015;9:476. doi: 10.3389/fncel.2015.00476
  40. Glebov K, Löchner M, Jabs R, et al. Serotonin stimulates secretion of exosomes from microglia cells. Glia. 2015;63(4):626–634. doi: 10.1002/glia.22772
  41. Kumari M, Anji A. Small but mighty — exosomes, novel intercellular messengers in neurodegeneration. Biology (Basel). 2022;11(3):413. doi: 10.3390/BIOLOGY11030413
  42. Pandey GN, Rizavi HS, Zhang H, et al. Abnormal protein and mRNA expression of inflammatory cytokines in the prefrontal cortex of depressed individuals who died by suicide. J Psychiatry Neurosci. 2018;43(6):376–385. doi: 10.1503/JPN.170192
  43. Tanti A, Lutz PE, Kim J, et al. Evidence of decreased gap junction coupling between astrocytes and oligodendrocytes in the anterior cingulate cortex of depressed suicides. Neuropsychopharmacology. 2019;44(12):2099–2111. doi: 10.1038/S41386-019-0471-Z
  44. Bani-Fatemi A, Tasmim S, Graff-Guerrero A, et al. Structural and functional alterations of the suicidal brain: an updated review of neuroimaging studies. Psychiatry Res Neuroimaging. 2018;(278):77–91. doi: 10.1016/J.PSCYCHRESNS.2018.05.008

版权所有 © Eco-Vector, 2023

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。
##common.cookie##