Innovative strategies for estimating the postmortem interval in forensic practice: multiomics, artificial intelligence, and hybrid models (a review)

Cover Page

Cite item

Full Text

Abstract

Determination of the postmortem interval remains one of the key tasks in forensic practice, as the accuracy of this assessment directly affects the objectivity of expert conclusions and the effectiveness of investigative procedures. Traditional postmortem interval estimation methods based on morphological indicators and thermometry have limited reliability, especially in the late postmortem period. Current research focuses on developing innovative approaches employing molecular technologies, microbiome analysis, multiomic strategies, and the integration of artificial intelligence for large-scale data processing.

This review summarizes modern methods for estimating the postmortem interval, including nucleic acid (DNA and RNA) analysis, proteomic and metabolomic approaches, and the study of microbiome changes. Particular attention is given to immunohistochemical markers, mass spectrometry, and nuclear magnetic resonance for quantification of biochemical processes in tissues and biological fluids. The prospects of applying molecular and chemical methods in forensic entomology during the late postmortem period are highlighted. A separate section discusses the use of machine and deep learning algorithms to construct predictive models based on multimodal data, including microbiome profiles, imaging features, and environmental parameters. Examples of combined approaches integrating biomolecular markers and computational technologies are presented, enabling more accurate estimation of the postmortem interval during both early and late postmortem periods.

About the authors

Gulgena R. Mustafina

Bashkir State Medical University

Email: gulgenarm@mail.ru
ORCID iD: 0000-0003-2534-6385
SPIN-code: 8904-2046

MD, Cand. Sci. (Medicine), Assistant Professor

Russian Federation, Ufa

Kirill O. Kuznetsov

Ufa University of Science and Technology; Bureau of Forensic Medical Examination

Author for correspondence.
Email: kuznetsovarticles@mail.ru
ORCID iD: 0000-0002-2405-1801
SPIN-code: 3053-3773

MD

Russian Federation, Ufa; Ufa

Svetlana A. Kosobutskaya

Sechenov First Moscow State Medical University (Sechenov University)

Email: fotinia78@mail.ru
ORCID iD: 0000-0002-5484-9574
SPIN-code: 2589-3752

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

Maksim A. Sokolovskiy

The Russian National Research Medical University named after N.I. Pirogov

Email: maks_sokolovskiy@internet.ru
ORCID iD: 0009-0005-4998-3532
SPIN-code: 8809-6895
Russian Federation, Moscow

Alvina I. Semenova

The Russian National Research Medical University named after N.I. Pirogov

Email: semyonowaalvina@yandex.ru
ORCID iD: 0009-0009-7823-9322
Russian Federation, Moscow

Valeriy N. Korotun

Bashkir State Medical University

Email: korotun_vn@mail.ru
ORCID iD: 0000-0001-9654-3269
SPIN-code: 5855-3161

MD, Cand. Sci. (Medicine), Assistant Professor

Russian Federation, Ufa

References

  1. Indiaminov SI, Zhumanov ZE, Blinova SA. Problems of Establishing the Prescription of Death. Forensic Medical Expertise. 2020;63(6):45–50. doi: 10.17116/sudmed20206306145 EDN: FXLSCS
  2. Lavrukova OS, Kazakova EL, Polyakov AYu. Postmortem Tissue Changes and Dynamics of Their Impedance Parameters: A Preclinical Experimental Study. Kuban Scientific Medical Bulletin. 2023;30(5):77–86. doi: 10.25207/1608-6228-2023-30-5-77-86 EDN: KIEPLW
  3. Buromsky IV, Sidorenko ES, Ermakova YV. The Current State of the Establishment of Prescription of Death Coming and the Ways to its Further. Forensic Medical Expertise. 2018;61(4):59–62. doi: 10.17116/sudmed201861459 EDN: XYHFPN
  4. Khalikov AA, Kildyushov EM, Kuznetsov KO, Rahmatullina GR. Estimation of Time Since Death With the Postmortem Microbiome: A Modern View and Approaches to Solving the Problem. Forensic Medical Expertise. 2022;65(3):49–53. doi: 10.17116/sudmed20226503149 EDN: TQGZHP
  5. Popov VL, Lavrukova OS. On the Issue of a Comprehensive Diagnosis of Death Coming in the Late Postmortem Period. Forensic Medical Expertise. 2021;64(4):30–36. doi: 10.17116/sudmed20216404130 EDN: CQRRFC
  6. Khalikov AA, Amineva GM, Kuznetsov KO, et al. Personality Factors’ Influence (Gender, Age, Death Category) on Indicators of Biophysical Objectification of Intra-Vital Injuries of a Putrefactive Corpse. Forensic Medical Expertise. 2021;64(4):25–29. doi: 10.17116/sudmed20216404125 EDN: YTMJFG
  7. Madea B. Methods for Determining Time of Death. Forensic Science, Medicine, and Pathology. 2016;12(4):451–485. doi: 10.1007/s12024-016-9776-y EDN: UTWHLK
  8. Kim JY, Kim Y, Cha HK, et al. Cell Death-Associated Ribosomal RNA Cleavage in Postmortem Tissues and Its Forensic Applications. Molecules and Cells. 2017;40(6):410–417. doi: 10.14348/molcells.2017.0039
  9. Li C, Wang Q, Zhang Y, et al. Research Progress in the Estimation of the Postmortem Interval by Chinese Forensic Scholars. Forensic Sciences Research. 2016;1(1):3–13. doi: 10.1080/20961790.2016.1229377
  10. Cianci V, Mondello C, Sapienza D, et al. Potential Role of mRNA in Estimating Postmortem Interval: A Systematic Review. International Journal of Molecular Sciences. 2024;25(15):8185. doi: 10.3390/ijms25158185 EDN: QFJPHU
  11. Scrivano S, Sanavio M, Tozzo P, Caenazzo L. Analysis of RNA in the Estimation of Post-Mortem Interval: A Review of Current Evidence. International Journal of Legal Medicine. 2019;133(6):1629–1640. doi: 10.1007/s00414-019-02125-x EDN: CIJYEW
  12. Sangwan A, Singh SP, Singh P, et al. Role of Molecular Techniques in PMI Estimation: An Update. Journal of Forensic and Legal Medicine. 2021;83:102251. doi: 10.1016/j.jflm.2021.102251 EDN: ADWHMS
  13. Sadykov MB, Begaliyev YN, Bakhteev DV, et al. Use of Artificial Intelligence and Human Chipping in Forensic Medicine: A Review. Russian Journal of Forensic Medicine. 2024;10(1):88–98. doi: 10.17816/fm16093 EDN: LXZIJZ
  14. Reither JB, Gray E, Durdle A, et al. Investigation Into the Prevalence of Background DNA on Flooring Within Houses and its Transfer to a Contacting Surface. Forensic Science International. 2021;318:110563. doi: 10.1016/j.forsciint.2020.110563 EDN: ZXQIQC
  15. Żarczyńska M, Żarczyński P, Tomsia M. Nucleic Acids Persistence—Benefits and Limitations in Forensic Genetics. Genes. 2023;14(8):1643. doi: 10.3390/genes14081643 EDN: DMBOKZ
  16. Higgins D, Rohrlach AB, Kaidonis J, et al. Differential Nuclear and Mitochondrial DNA Preservation in Post-Mortem Teeth with Implications for Forensic and Ancient DNA Studies. PLOS ONE. 2015;10(5):e0126935. doi: 10.1371/journal.pone.0126935 EDN: URHMHV
  17. Freire-Aradas A, Fondevila M, Kriegel AK, et al. A New SNP Assay for Identification of Highly Degraded Human DNA. Forensic Science International: Genetics. 2012;6(3):341–349. doi: 10.1016/j.fsigen.2011.07.010 EDN: PLNDKH
  18. Ivanov PL, Leonov SN, Zemskova EIu, et al. Multilocus Genotyping of Polymorphous STR-Loci of Chromosomal DNA in Individual Cells: Technical Difficulties. Forensic Medical Expertise. 2013;56(5):19–23. EDN: RTJXLP
  19. Alaeddini R, Walsh SJ, Abbas A. Forensic Implications of Genetic Analyses From Degraded DNA—A Review. Forensic Science International: Genetics. 2010;4(3):148–157. doi: 10.1016/j.fsigen.2009.09.007 EDN: MZTTRR
  20. Kumar N, Aparna R, Sharma S. Effect of Postmortem Interval and Conditions of Teeth on STR Based DNA Profiling from Unidentified Dead Bodies. Journal of Forensic and Legal Medicine. 2021;83:102246. doi: 10.1016/j.jflm.2021.102246 EDN: CTWJRH
  21. Bianchi I, Grassi S, Nardi E, et al. Dental DNA Mutations Occurring after Death: A Novel Method for Post-Mortem Interval (PMI) Estimation. International Journal of Molecular Sciences. 2024;25(16):8832. doi: 10.3390/ijms25168832 EDN: RAFZYH
  22. Bianchi I, Grassi S, Castiglione F, et al. Dental DNA as an Indicator of Post-Mortem Interval (PMI): A Pilot Research. International Journal of Molecular Sciences. 2022;23(21):12896. doi: 10.3390/ijms232112896 EDN: ALHZFX
  23. Akbulut N, Çetin S, Bilecenoğlu B, et al. The micro-CT Evaluation of Enamel-Cement Thickness, Abrasion, and Mineral Density in Teeth in the Postmortem Interval (PMI): New Parameters for the Determination of PMI. International Journal of Legal Medicine. 2019;134(2):645–653. doi: 10.1007/s00414-019-02104-2 EDN: NPFPDO
  24. Mansour H, Krebs O, Pinnschmidt HO, et al. Factors Affecting Dental DNA in Various Real Post-Mortem Conditions. International Journal of Legal Medicine. 2019;133(6):1751–1759. doi: 10.1007/s00414-019-02151-9 EDN: PLMJHR
  25. Gross JA, Nagy C, Lin L, et al. Global and Site-Specific Changes in 5-Methylcytosine and 5-Hydroxymethylcytosine after Extended Post-mortem Interval. Frontiers in Genetics. 2016;7:120. doi: 10.3389/fgene.2016.00120
  26. Mohamed M, El Sherbeny M, Farag D. A Comparative Study of Two Gel-Based Techniques to Detect the Relationship Between Post-Mortem Interval And Nuclear DNA Degradation In Different Tissues In Albino Rats. Egyptian Dental Journal. 2020;66(1):175–186. doi: 10.21608/edj.2020.77533 EDN: UDLGQW
  27. Williams T, Soni S, White J, et al. Evaluation of DNA Degradation Using Flow Cytometry. American Journal of Forensic Medicine & Pathology. 2015;36(2):104–110. doi: 10.1097/PAF.0000000000000146
  28. Larkin B, Iaschi S, Dadour I, Tay GK. Using Accumulated Degree-Days to Estimate Postmortem Interval From the DNA Yield of Porcine Skeletal Muscle. Forensic Science, Medicine, and Pathology. 2009;6(2):83–92. doi: 10.1007/s12024-009-9109-5 EDN: ZGTRVT
  29. Pérez-Martínez C, Pérez-Cárceles MD, Legaz I, et al. Quantification of Nitrogenous Bases, DNA and Collagen Type I for the Estimation of the Postmortem Interval in Bone Remains. Forensic Sci Int. 2017;281:106–112. doi: 10.1016/j.forsciint.2017.10.039
  30. Weis S, Llenos IC, Dulay JR, et al. Quality Control for Microarray Analysis of Human Brain Samples: The Impact of Postmortem Factors, RNA Characteristics, and Histopathology. Journal of Neuroscience Methods. 2007;165(2):198–209. doi: 10.1016/j.jneumeth.2007.06.001 EDN: MGPJOD
  31. Bauer M, Gramlich I, Polzin S, Patzelt D. Quantification of mRNA Degradation as Possible Indicator of Postmortem Interval—A Pilot Study. Legal Medicine. 2003;5(4):220–227. doi: 10.1016/j.legalmed.2003.08.001
  32. Bauer M, Polzin S, Patzelt D. Quantification of RNA Degradation by Semi-Quantitative Duplex and Competitive RT-PCR: A Possible Indicator of the Age of Bloodstains? Forensic Science International. 2003;138(1-3):94–103. doi: 10.1016/j.forsciint.2003.09.008
  33. Sampaio-Silva F, Magalhães T, Carvalho F, et al. Profiling of RNA Degradation for Estimation of Post Morterm Interval. PLoS ONE. 2013;8(2):e56507. doi: 10.1371/journal.pone.0056507
  34. Wang H, Ma J, Xu H, et al. Early Postmortem Interval (EPMI) Estimation Using Differentially Expressed Gene Transcripts. Legal Medicine. 2019;38:83–91. doi: 10.1016/j.legalmed.2019.04.008
  35. Lv YH, Ma JL, Pan H, et al. RNA Degradation as Described by a Mathematical Model for Postmortem Interval Determination. Journal of Forensic and Legal Medicine. 2016;44:43–52. doi: 10.1016/j.jflm.2016.08.015
  36. Heinrich M, Lutz-Bonengel S, Matt K, Schmidt U. Real-Time PCR Detection of Five Different “Endogenous Control Gene” Transcripts in Forensic Autopsy Material. Forensic Science International: Genetics. 2007;1(2):163–169. doi: 10.1016/j.fsigen.2007.01.002
  37. Li WC, Ma KJ, Lv YH, et al. Postmortem Interval Determination Using 18S-rRNA and microRNA. Science & Justice. 2014;54(4):307–310. doi: 10.1016/j.scijus.2014.03.001 EDN: YBCPNW
  38. Tu C, Du T, Ye X, et al. Using miRNAs and circRNAs to Estimate PMI in Advanced Stage. Legal Medicine. 2019;38:51–57. doi: 10.1016/j.legalmed.2019.04.002 EDN: KOMZUO
  39. Poór VS, Lukács D, Nagy T, et al. The Rate of RNA Degradation in Human Dental Pulp Reveals Post-Mortem Interval. International Journal of Legal Medicine. 2015;130(3):615–619. doi: 10.1007/s00414-015-1295-y
  40. Young ST, Wells JD, Hobbs GR, Bishop CP. Estimating Postmortem Interval using RNA degradation and morphological changes in tooth pulp. Forensic Science International. 2013;229(1-3):163.e1–163.e6. doi: 10.1016/j.forsciint.2013.03.035
  41. Martínez-Rivera V, Cárdenas-Monroy CA, Millan-Catalan O, et al. Dysregulation of miR-381-3p and miR-23b-3p in Skeletal Muscle Could be a Possible Estimator of Early Post-Mortem Interval in rats. PeerJ. 2021;9:e11102. doi: 10.7717/peerj.11102 EDN: QAPCZU
  42. Sharma S, Singh D, Kaul D. AATF RNome Has the Potential to Define Post Mortem Interval. Forensic Science International. 2015;247:e21–e24. doi: 10.1016/j.forsciint.2014.12.008
  43. Deng W, Lv M, Wang L, et al. mRNA Degradation Pattern Analysis in Post-Mortem Normalized Using the DNA. Forensic Science International: Genetics. 2013;4(1):e266–e267. doi: 10.1016/j.fsigss.2013.10.136
  44. Stollar EJ, Smith DP. Uncovering Protein Structure. Essays in Biochemistry. 2020;64(4):649–680. doi: 10.1042/ebc20190042 EDN: SHZWKV
  45. Huang W, Zhao S, Liu H, et al. The Role of Protein Degradation in Estimation Postmortem Interval and Confirmation of Cause of Death in Forensic Pathology: A Literature Review. International Journal of Molecular Sciences. 2024;25(3):1659. doi: 10.3390/ijms25031659 EDN: LVBLPS
  46. Aebersold R, Mann M. Mass-Spectrometric Exploration of Proteome Structure and Function. Nature. 2016;537(7620):347–355. doi: 10.1038/nature19949 EDN: IPBZQW
  47. Sakurada K, Watanabe K, Akutsu T. Current Methods for Body Fluid Identification Related to Sexual Crime: Focusing on Saliva, Semen, and Vaginal Fluid. Diagnostics. 2020;10(9):693. doi: 10.3390/diagnostics10090693 EDN: TKRSUQ
  48. Parker GJ, McKiernan HE, Legg KM, Goecker ZC. Forensic Proteomics. Forensic Science International: Genetics. 2021;54:102529. doi: 10.1016/j.fsigen.2021.102529 EDN: XBXXJV
  49. Kang S, Kassam N, Gauthier ML, O’Day DH. Post-Mortem Changes in Calmodulin Binding Proteins in Muscle and Lung. Forensic Science International. 2003;131(2-3):140–147. doi: 10.1016/S0379-0738(02)00426-7
  50. Poloz YO, O’Day DH. Determining Time of Death: Temperature-Dependent Postmortem Changes in Calcineurin A, MARCKS, CaMKII, and Protein Phosphatase 2A in Mouse. International Journal of Legal Medicine. 2009;123(4):305–314. doi: 10.1007/s00414-009-0343-x EDN: GDTNOU
  51. Pittner S, Monticelli FC, Pfisterer A, et al. Postmortem Degradation of Skeletal Muscle Proteins: a Novel Approach to Determine the Time Since Death. International Journal of Legal Medicine. 2015;130(2):421–431. doi: 10.1007/s00414-015-1210-6 EDN: PAACXA
  52. Pittner S, Ehrenfellner B, Zissler A, et al. First Application of a Protein-Based Approach for time Since Death Estimation. International Journal of Legal Medicine. 2016;131(2):479–483. doi: 10.1007/s00414-016-1459-4 EDN: LILOFA
  53. Foditsch EE, Saenger AM, Monticelli FC. Skeletal Muscle Proteins: A New Approach to Delimitate the Time Since Death. International Journal of Legal Medicine. 2015;130(2):433–440. doi: 10.1007/s00414-015-1204-4 EDN: IBHEZF
  54. Zissler A, Stoiber W, Steinbacher P, et al. Postmortem Protein Degradation as a Tool to Estimate the PMI: A Systematic Review. Diagnostics. 2020;10(12):1014. doi: 10.3390/diagnostics10121014 EDN: DDYFOS
  55. Battistini A, Capitanio D, Bailo P, et al. Proteomic Analysis by Mass Spectrometry of Postmortem Muscle Protein Degradation for PMI Estimation: A Pilot Study. Forensic Science International. 2023;349:111774. doi: 10.1016/j.forsciint.2023.111774 EDN: YRGRYM
  56. Choi KM, Zissler A, Kim E, et al. Postmortem Proteomics to Discover Biomarkers for Forensic PMI Estimation. International Journal of Legal Medicine. 2019;133(3):899–908. doi: 10.1007/s00414-019-02011-6 EDN: RFDCGI
  57. Procopio N, Williams A, Chamberlain AT, Buckley M. Forensic Proteomics for the Evaluation of the Post-Mortem Decay in Bones. Journal of Proteomics. 2018;177:21–30. doi: 10.1016/j.jprot.2018.01.016
  58. Abd Elazeem EA, Ismail MME, Zaghloul HS, et al. Estimation of Postmortem Interval in Myocardial Stab Wounds and Firearm Injuries: An Immunohistochemical Comparative Study Using C5b-9 and Cardiac Troponin C. Forensic Science International. 2021;324:110846. doi: 10.1016/j.forsciint.2021.110846 EDN: NRNBVF
  59. Kumar S, Ali W, Singh US, et al. The Effect of Elapsed Time on the Cardiac Troponin-T (cTnT) Proteolysis in Case of Death Due to Burn: A Study to Evaluate the Potential Forensic Use of cTnT to Determine the Postmortem Interval. Science & Justice. 2015;55(3):189–194. doi: 10.1016/j.scijus.2014.12.006
  60. Peyron PA, Hirtz C, Baccino E, et al. Tau Protein in Cerebrospinal Fluid: A Novel Biomarker of the Time of Death? International Journal of Legal Medicine. 2021;135(5):2081–2089. doi: 10.1007/s00414-021-02558-3 EDN: QRGPMV
  61. Campell ZK, Kwon I, Finley SJ, et al. Talin: A Potential Protein Biomarker in Postmortem Investigations. Journal of Forensic and Legal Medicine. 2016;44:188–191. doi: 10.1016/j.jflm.2016.10.020
  62. Kim BJ, Han C, Moon H, et al. Monitoring of Post-Mortem Changes of Saliva N-glycosylation by Nano LC/MS. Analytical and Bioanalytical Chemistry. 2017;410(1):45–56. doi: 10.1007/s00216-017-0702-2 EDN: YFJVID
  63. De-Giorgio F, Bergamin E, Baldi A, et al. Immunohistochemical Expression of HMGB1 and Related Proteins in The Skin as a Possible Tool for Determining Post-Mortem Interval: A Preclinical Study. Forensic Science, Medicine and Pathology. 2023;20(1):149–165. doi: 10.1007/s12024-023-00634-1 EDN: QZGUXW
  64. Mazzotti MC, Fais P, Palazzo C, et al. Determining the Time of Death by Morphological and Immunohistochemical Evaluation of Collagen Fibers in Postmortem Gingival Tissues. Legal Medicine. 2019;39:1–8. doi: 10.1016/j.legalmed.2019.05.002
  65. Nolan AND, Mead RJ, Maker G, et al. The Impact of Environmental Factors on the Production of Peptides in Mammalian Decomposition Fluid in Relation to the Estimation of Post-Mortem Interval: A Summer/Winter Comparison in Western Australia. Forensic Science International. 2019;303:109957. doi: 10.1016/j.forsciint.2019.109957 EDN: BOIVTL
  66. Prikhod'ko AN, Lavrukova OS, Lyabzina SN, et al. The Use of the Microbial and Entomological Data for the Diagnostics of Prescription of Death Coming. Forensic Medical Expertise. 2018;61(6):52–56. doi: 10.17116/sudmed20186106152 EDN: MHUVCH
  67. Rueda LC, Ortega LG, Segura NA, et al. Lucilia Sericata Strain from Colombia: Experimental Colonization, Life Tables and Evaluation of Two Artificial Diets of the Blowfly Lucilia Sericata (Meigen) (Diptera: Calliphoridae), Bogotá, Colombia strain. Biological Research. 2010;43(2):197–203. doi: 10.4067/S0716-97602010000200008
  68. Gebhart FTF, Brogdon BG, Zech WD, et al. Gas at Postmortem Computed Tomography – An Evaluation of 73 Non-Putrefied Trauma and Non-Trauma Cases. Forensic Science International. 2012;222(1-3):162–169. doi: 10.1016/j.forsciint.2012.05.020
  69. Matuszewski S, Bajerlein D, Konwerski S, Szpila K. An Initial Study of Insect Succession and Carrion Decomposition in Various Forest Habitats of Central Europe. Forensic Science International. 2008;180(2-3):61–69. doi: 10.1016/j.forsciint.2008.06.015
  70. Voss SC, Forbes SL, Dadour IR. Decomposition and Insect Succession on Cadavers Inside a Vehicle Environment. Forensic Science, Medicine, and Pathology. 2007;4(1):22–32. doi: 10.1007/s12024-007-0028-z EDN: VBKOJU
  71. Niederegger S, Schermer J, Höfig J, Mall G. Case Report: Time of Death Estimation of a Buried Body by Modeling a Decomposition Matrix for a Pig Carcass. Legal Medicine. 2015;17(1):34–38. doi: 10.1016/j.legalmed.2014.08.007
  72. Sukontason KL, Narongchai P, Sukontason K, et al. Forensically Important Fly Maggots in a Floating Corpse: The First Case Report in Thailand. J Med Assoc Thai. 2005;88(10):1458–1461. Available from: https://www.thaiscience.info/journals/Article/JMAT/10778740.pdf
  73. Wang M, Chu J, Wang Y, et al. Forensic Entomology Application in China: Four Case Reports. Journal of Forensic and Legal Medicine. 2019;63:40–47. doi: 10.1016/j.jflm.2019.03.001
  74. Matuszewski S, Mądra-Bielewicz A. Post-Mortem Interval Estimation Based on Insect Evidence in a Quasi-Indoor Habitat. Science & Justice. 2019;59(1):109–115. doi: 10.1016/j.scijus.2018.06.004 EDN: MXLMMJ
  75. Hu G, Wang M, Wang Y, et al. Estimation of Post-Mortem Interval Based on Insect Species Present on a Corpse Found in A Suitcase. Forensic Science International. 2020;306:110046. doi: 10.1016/j.forsciint.2019.110046 EDN: NVCCMS
  76. Worner SP. Evaluation of Diurnal Temperature Models and Thermal Summation in New Zealand. Journal of Economic Entomology. 1988;81(1):9–13. doi: 10.1093/jee/81.1.9
  77. Amendt J, Richards CS, Campobasso CP, et al. Forensic Entomology: Applications and Limitations. Forensic Science, Medicine, and Pathology. 2011;7(4):379–392. doi: 10.1007/s12024-010-9209-2 EDN: UTFRFD
  78. Palavesam A, Selvakumar R, Latha BR, et al. Assessment of Consistency of Minimum Post-Mortem Intervals Estimated by Thermal Summation-Based Methods in Medico-Legal Cases Associated With Blowflies. Legal Medicine. 2023;61:102210. doi: 10.1016/j.legalmed.2023.102210 EDN: NQGBEI
  79. Zajac B, Amendt J, Verhoff M, Zehner R. Dating Pupae of the Blow Fly Calliphora vicina Robineau–Desvoidy 1830 (Diptera: Calliphoridae) for Post Mortem Interval—Estimation: Validation of Molecular Age Markers. Genes. 2018;9(3):153. doi: 10.3390/genes9030153 EDN: YGCTTV
  80. Paula MC, Michelutti KB, Eulalio ADMM, et al. New Method for Estimating the Post-Mortem Interval Using the Chemical Composition of Different Generations of Empty Puparia: Indoor Cases. PLOS ONE. 2018;13(12):e0209776. doi: 10.1371/journal.pone.0209776
  81. Baqué M, Amendt J. Strengthen Forensic Entomology in Court—the Need for Data Exploration and the Validation of a Generalised Additive Mixed Model. International Journal of Legal Medicine. 2012;127(1):213–223. doi: 10.1007/s00414-012-0675-9 EDN: RPLNVR
  82. Choi RY, Coyner AS, Kalpathy-Cramer J, et al. Introduction to Machine Learning, Neural Networks, and Deep Learning. Transl Vis Sci Technol. 2020;9(2):14. doi: 10.1167/tvst.9.2.14
  83. Sharma R, Bhute AR, Bastia BK. Application of Artificial Intelligence and Machine Learning Technology for the Prediction of Postmortem Interval: A Systematic Review of Preclinical and Clinical Studies. Forensic Science International. 2022;340:111473. doi: 10.1016/j.forsciint.2022.111473 EDN: UFMFUB
  84. Li J, Wu Y, Liu M, et al. Multi-Omics Integration Strategy in the Post-Mortem Interval of Forensic Science. Talanta. 2024;268:125249. doi: 10.1016/j.talanta.2023.125249 EDN: AFCZLN
  85. Wang Z, Zhang F, Wang L, et al. Advances in Artificial Intelligence-Based Microbiome for PMI Estimation. Frontiers in Microbiology. 2022;13:1034051. doi: 10.3389/fmicb.2022.1034051 EDN: YIMWPM
  86. Speruda M, Piecuch A, Borzęcka J, et al. Microbial Traces and Their Role in Forensic Science. Journal of Applied Microbiology. 2022;132(4):2547–2557. doi: 10.1111/jam.15426 EDN: HMQGLW
  87. Johnson HR, Trinidad DD, Guzman S, et al. A Machine Learning Approach for Using the Postmortem Skin Microbiome to Estimate the Postmortem Interval. PLOS ONE. 2016;11(12):e0167370. doi: 10.1371/journal.pone.0167370
  88. Zhang Y, Pechal JL, Schmidt CJ, et al. Machine Learning Performance in a Microbial Molecular Autopsy Context: A Cross-Sectional Postmortem Human Population Study. PLOS ONE. 2019;14(4):e0213829. doi: 10.1371/journal.pone.0213829
  89. Hu L, Xing Y, Jiang P, et al. Predicting the Postmortem Interval Using Human Intestinal Microbiome Data and Random Forest Algorithm. Science & Justice. 2021;61(5):516–527. doi: 10.1016/j.scijus.2021.06.006 EDN: QURWRA
  90. Li N, Liang X, Zhou S, et al. Exploring Postmortem Succession of Rat Intestinal Microbiome for PMI Based on Machine Learning Algorithms and Potential Use for Humans. Forensic Science International: Genetics. 2023;66:102904. doi: 10.1016/j.fsigen.2023.102904 EDN: EHZSPM
  91. Cui C, Song Y, Mao D, et al. Predicting the Postmortem Interval Based on Gravesoil Microbiome Data and a Random Forest Model. Microorganisms. 2022;11(1):56. doi: 10.3390/microorganisms11010056 EDN: UEWHGV
  92. Zhang J, Wang M, Qi X, et al. Predicting the Postmortem Interval of Burial Cadavers Based on Microbial Community Succession. Forensic Science International: Genetics. 2021;52:102488. doi: 10.1016/j.fsigen.2021.102488 EDN: RUBAEJ
  93. Cantürk İ, Özyılmaz L. A Computational Approach to Estimate Postmortem Interval Using Opacity Development of Eye for Human Subjects. Comput Biol Med. 2018;98:93–99. doi: 10.1016/j.compbiomed.2018.04.023
  94. Wu Z, Guo Y, Hayakawa M, et al. Artificial Intelligence-Driven Microbiome Data Analysis for Estimation of Postmortem Interval and Crime Location. Frontiers in Microbiology. 2024;15:1334703. doi: 10.3389/fmicb.2024.1334703 EDN: SAKUFJ
  95. Woydt L, Bernhard M, Kirsten H, et al. Intra-Individual Alterations of Serum Markers Routinely Used in Forensic Pathology Depending on Increasing Post-Mortem Interval. Scientific Reports. 2018;8(1):12811. doi: 10.1038/s41598-018-31252-5 EDN: RYKYWF
  96. Chighine A, Stocchero M, Ferino G, et al. Metabolomics Investigation of Post-Mortem Human Pericardial Fluid. International Journal of Legal Medicine. 2023;137(6):1875–1885. doi: 10.1007/s00414-023-03050-w EDN: ZLHRDH
  97. Usumoto Y, Kudo K, Tsuji A, et al. The Derivation of Predictive Equations to Speculate the Post-Mortem Interval Using Cases With Over 20-mL Pleural Effusion: A Preliminary Study. Journal of Forensic and Legal Medicine. 2019;65:61–67. doi: 10.1016/j.jflm.2019.05.001
  98. De-Giorgio F, Ciasca G, Fecondo G, et al. Post Mortem Computed Tomography Meets Radiomics: A Case Series on Fractal Analysis of Post Mortem Changes in the Brain. International Journal of Legal Medicine. 2022;136(3):719–727. doi: 10.1007/s00414-022-02801-5 EDN: RYIOJQ
  99. Wilk LS, Edelman GJ, Roos M, et al. Individualised and Non-Contact Post-Mortem Interval Determination of Human Bodies Using Visible and Thermal 3D Imaging. Nature Communications. 2021;12(1):5997. doi: 10.1038/s41467-021-26318-4 EDN: VYLIPL
  100. Castro AL, Tarelho S, Dias M, et al. Comparison of endogenous GHB concentrations in blood and hair in death cases with emphasis on the post mortem interval. International Journal of Legal Medicine. 2016;130(4):959–965. doi: 10.1007/s00414-016-1321-8
  101. Mahajan N, Sharma SK, Kumar M, et al. Vitamin C as a Potential Indicator of Post-Mortem Interval: A Biochemical Analysis. Indian Journal of Forensic Medicine & Toxicology. 2019;13(1):35–39. doi: 10.5958/0973-9130.2019.00008.2

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».