Pathology of COVID-19

Cover Page

Cite item

Full Text

Abstract

Coronavirus infection 2019 (COVID-19) has become a challenge for the health care system around the world due to the progressive increase in the number of cases with severe manifestations of the disease. Autopsy findings are fundamental and critical to better understanding how infection affects the human body. These data are needed to improve diagnostic and treatment methods, as well as to stratify risk groups.

The purpose of the review is to analyze and summarize the pathological data available to date related to COVID-19. In COVID-19, the lungs are usually severe and swollen. Histologically, the most frequent is the detection of both exudative and proliferative diffuse alveolar injury with the formation of hyaline membranes, inflammatory cell infiltration, and stagnant small vessels. There is also evidence that SARS-CoV-2 causes endothelial dysfunction. There is still insufficient data to reflect the complete pathophysiological picture of SARS-CoV-2 infection.

Almost all of the articles reviewed in this review focused on pulmonary macro- and microscopic changes; there is little data on the features of the virus affecting other organs and its systemic effect. Despite the tremendous attention and investment in the fight against the new coronavirus infection, diagnosis of most of the deaths associated with COVID-19 is difficult.

It is necessary to conduct further pathological studies, the purpose of which should be the development of a standardized diagnostic method, as well as the isolation of pathognomonic signs of the disease.

About the authors

Rafael H. Sagidullin

Bashkir State Medical University

Email: sagidullin12@yandex.ru
ORCID iD: 0000-0002-5721-8831

MD, Cand. Sci. (Med.), Associate Professor

Russian Federation, Ufa

Airat A. Khalikov

Bashkir State Medical University

Email: airat.expert@mail.ru
ORCID iD: 0000-0003-1045-5677
SPIN-code: 1895-7300

MD, Dr. Sci. (Med.), Professor

Russian Federation, Ufa

Alina R. Nazmieva

Bashkir State Medical University

Email: nazmieva12@mail.ru
ORCID iD: 0000-0002-7653-9585
Russian Federation, Ufa

Kirill O. Kuznetsov

The Russian National Research Medical University named after N.I. Pirogov

Email: kirillkuznetsov@aol.com
ORCID iD: 0000-0002-2405-1801
SPIN-code: 3053-3773
Russian Federation, per. Holzunova 7, 119435, Moscow

Hyadi V. Kartoeva

Bashkir State Medical University

Author for correspondence.
Email: kartoeva97@inbox.ru
ORCID iD: 0000-0002-4364-272X
Russian Federation, Ufa

References

  1. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. doi: 10.1016/S0140-6736(20)30566-3
  2. Salehi S, Abedi A, Balakrishnan S, Gholamrezanezhad A. Coronavirus Disease 2019 (COVID-19): a systematic review of imaging findings in 919 patients. AJR Am J Roentgenol. 2020;215(1):87–93. doi: 10.2214/AJR.20.23034
  3. Li X, Ma X. Acute respiratory failure in COVID-19: is it “typical” ARDS? Crit Care. 2020;24(1):198. doi: 10.1186/s13054-020-02911-9
  4. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-30185
  5. Devaux CA, Rolain JM, Raoult D. ACE2 receptor polymorphism: susceptibility to SARS-CoV-2, hypertension, multi-organ failure, and COVID-19 disease outcome. J Microbiol Immunol Infect. 2020;53(3):425–435. doi: 10.1016/j.jmii.2020.04.015
  6. Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420–422. doi: 10.1016/S2213-2600(20)30076-X
  7. Zhang H, Zhou P, Wei Y, et al. Histopathologic changes and SARS-CoV-2 immunostaining in the lung of a patient with COVID-19. Ann Intern Med. 2020;172(9):629–632. doi: 10.7326/M20-0533
  8. Dolhnikoff M, Duarte-Neto AN, de Almeida Monteiro RA, et al. Pathological evidence of pulmonary thrombotic phenomena in severe COVID-19. J Thromb Haemost. 2020;18(6):1517–1519. doi: 10.1111/jth.14844
  9. Li G, Fox SE, Summa B, et al. Multiscale 3-dimensional pathology findings of COVID-19 diseased lung using high-resolution cleared tissue microscopy. bioRxiv. 2020. doi: 10.1101/2020.04.11.037473
  10. Yao XH, Li TY, He ZC, et al. A pathological report of three COVID-19 cases by minimal invasive autopsies. Zhonghua Bing Li Xue Za Zhi. 2020;49(5):411–417. doi: 10.3760/cma.j.cn112151-20200312-00193
  11. Tian S, Xiong Y, Liu H, et al. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. Mod Pathol. 2020;33(6):1007–1014. doi: 10.1038/s41379-020-0536-x
  12. Duarte-Neto AN, Monteiro RA, da Silva LF, et al. Pulmonary and systemic involvement in COVID-19 patients assessed with ultrasound-guided minimally invasive autopsy. Histopathology. 2020;77(2):186–197. doi: 10.1111/his.14160
  13. COVID-19 Autopsy. The first COVID-19 autopsy in Spain performed during the early stages of the pandemic. Rev Esp Patol. 2020;53(3):182–187. doi: 10.1016/j.patol.2020.05.004
  14. Magro C, Mulvey JJ, Berlin D, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl Res. 2020;220:1–13. doi: 10.1016/j.trsl.2020.04.007
  15. Su H, Yang M, Wan C, et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 2020;98(1):219–227. doi: 10.1016/j.kint.2020.04.003
  16. Barton LM, Duval EJ, Stroberg E, et al. COVID-19 Autopsies, Oklahoma, USA. Am J Clin Pathol. 2020;153(6):725–733. doi: 10.1093/ajcp/aqaa062
  17. Rybakova MG, Karev VE, Kuznetsova IA. Anatomical pathology of novel coronavirus (COVID-19) infection. First impressions. Arch Pathol. 2020;82(5):5–15. (In Russ). doi: 10.17116/patol2020820515
  18. Grimes Z, Bryce C, Sordillo EM, et al. Fatal pulmonary thromboembolism in SARS-CoV-2-infection. Cardiovasc Pathol. 2020;48:107227. doi: 10.1016/j.carpath.2020.107227
  19. Zayratyants OV, Samsonova MV, Cherniaev AL, et al. COVID-19 pathology: experience of 2000 autopsies. Russian Journal of Forensic Medicine. 2020;6(4):10–23. (In Russ). doi: 10.19048/fm340
  20. Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417–1418. doi: 10.1016/S0140-6736(20)30937-5
  21. Bradley BT, Maioli H, Johnston R, et al. Histopathology and ultrastructural findings of fatal COVID-19 infections in Washington State: a case series. Lancet. 2020;396(10247):320–332. doi: 10.1016/S0140-6736(20)31305-2
  22. Paniz-Mondolfi A, Bryce C, Grimes Z, et al. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J Med Virol. 2020;92(7):699–702. doi: 10.1002/jmv.25915
  23. Lacy JM, Brooks EG, Akers J, et al. COVID-19: postmortem diagnostic and biosafety considerations. Am J Forensic Med Pathol. 2020;41(3):143–151. doi: 10.1097/PAF.0000000000000567
  24. Konopka KE, Wilson A, Myers JL. Postmortem lung findings in a patient with asthma and coronavirus disease 2019. Chest. 2020;158(3):e99–e101. doi: 10.1016/j.chest.2020.04.032
  25. Yan L, Mir M, Sanchez P, et al. COVID-19 in a Hispanic woman. Arch Pathol Lab Med. 2020;144(9):1041–1047. doi: 10.5858/arpa.2020-0217-SA
  26. Edler C, Schröder AS, Aepfelbacher M, et al. Dying with SARS- CoV-2 infection-an autopsy study of the first consecutive 80 cases in Hamburg, Germany. Int J Legal Med. 2020;134(4):1275–1284. doi: 10.1007/s00414-020-02317-w
  27. Bryce C, Grimes Z, Pujadas E, et al. Pathophysiology of SARS-CoV-2: targeting of endothelial cells renders a complex disease with thrombotic microangiopathy and aberrant immune response. The Mount Sinai COVID-19 autopsy experience. medRxiv. 2020. doi: 10.1101/2020.05.18.20099960
  28. Fox SE, Akmatbekov A, Harbert JL, et al. Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans. Lancet Respir Med. 2020;8(7):681–686. doi: 10.1016/S2213-2600(20)30243-5
  29. Carsana L, Sonzogni A, Nasr A, et al. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study. Lancet Infect Dis. 2020;20(10):1135–1140. doi: 10.1016/S1473-3099(20)30434-5
  30. Aguiar D, Lobrinus JA, Schibler M. Inside the lungs of COVID-19 disease. Int J Legal Med. 2020;134(4):1271–1274. doi: 10.1007/s00414-020-02318-9
  31. Matthay MA, Zemans RL, Zimmerman GA, et al. Acute respiratory distress syndrome. Nat Rev Dis Primers. 2019;5(1):18. doi: 10.1038/s41572-019-0069-0
  32. Fuchs TA, Brill A, Wagner DD. Neutrophil extracellular trap (NET) impact on deep vein thrombosis. Arterioscler Thromb Vasc Biol. 2012;32(8):1777–1783. doi: 10.1161/ATVBAHA.111.242859
  33. Robert Koch Institute. Empfehlungen zum Umgang mit SARS-Cov-2-infizierten Verstorbenen. 2020. Available from: https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Verstorbene.html. Accessed: 11.08.2021.
  34. Maiese A, Manetti, AC, La Russa R, et al. Autopsy findings in COVID- 19-related deaths: a literature review. Forensic science, medicine, and pathology. 2021;17(2):279–296. doi: 10.1007/s12024-020-00310-8
  35. Hanley B, Lucas SB, Youd E, et al. Autopsy in suspected COVID-19 cases. J Clin Pathol. 2020;73(5):239–242. doi: 10.1136/jclinpath-2020-206522
  36. Sheng ZM, Chertow DS, Ambroggio X, et al. Autopsy series of 68 cases dying before and during the 1918 influenza pandemic peak. Proc Natl Acad Sci USA. 2011;108(39):16416–16421. doi: 10.1073/pnas.1111179108
  37. Monteil V, Kwon H, Prado P, et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell. 2020;181(4):905–913. doi: 10.1016/j.cell.2020.04.004
  38. Lan J, Ge J, Yu J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020;581(7807):215–220. doi: 10.1038/s41586-020-2180-5
  39. Ferrario CM, Jessup J, Chappell MC, et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation. 2005;111(20):2605–2610. doi: 10.1161/CIRCULATIONAHA.104.510461
  40. Hamming I, Timens W, Bulthuis ML, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631–637. doi: 10.1002/path.1570
  41. Puelles VG, Lütgehetmann M, Lindenmeyer MT, et al. Multiorgan and renal tropism of SARS-CoV-2. N Engl J Med. 2020;383(6):590–592. doi: 10.1056/NEJMc2011400

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Sagidullin R.H., Khalikov A.A., Nazmieva A.R., Kuznetsov K.O., Kartoeva H.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies