Mathematical modeling of the corpse cooling under conditions of varying ambient temperature

Cover Page

Cite item

Full Text

Abstract

Background: The constancy of the ambient temperature is the main condition to correctly determine the time of death by thermometric method. However, in practice, this requirement is met only in cases of death in closed rooms. In this study, an exponential mathematical model was proposed for corpse cooling under any changes in ambient temperature. Aim: This study aimed to develop a mathematical model to determine the time of death based on the Newton–Richman cooling law in changing ambient temperature conditions. Materials and methods: Mathematical modeling of corpse cooling under changing ambient temperature is performed, focusing on problem solving of thermometric determination of the time of death. The axillary hollow was used as the diagnostic zone of the corpse, and the temperature of which at the time of death is taken is 36.6°С. Results: A method of reverse reproduction of the cadaver temperature in conditions of changing ambient temperature has been developed. Results allow a relatively simple analytical determination of the time of death in the early postmortem period. Conclusions: The proposed method is advisable to be used in forensic medical practice to determine the time of death in early postmortem period. The developed mathematical model is implemented in the format of the application program Warm Bodies NRN. Use of tympanic and intraocular thermometry was recommended within the proposed model.

About the authors

German V. Nedugov

Samara State Medical University

Author for correspondence.
Email: nedugovh@mail.ru
ORCID iD: 0000-0002-7380-3766
SPIN-code: 3828-8091
Scopus Author ID: 25947646500

Cand. Sci. (Med.), Assistant Professor

Russian Federation, Samara

References

  1. Wilk LS, Hoveling RJ, Edelman GJ, et al. Reconstructing the time since death using noninvasive thermometry and numerical analysis. Sci Adv. 2020;6(22):eaba4243. doi: 10.1126/sciadv.aba4243
  2. Hubig M, Muggenthaler H, Mall G. Confidence intervals in temperature-based death time determination. Leg Med (Tokyo). 2015;17(1):48–51. doi: 10.1016/j.legalmed.2014.08.002
  3. Shved AF, Vavilov AJu. Technique of the automated search the moment of the beginning of process of postmortal coolings (time of death) with use the standard tabulared processor Microsoft® Office Excel. Problemy ekspertizy v meditsine. 2005;5(3):36–39. (In Russ).
  4. Davidzon MI. O zakone okhlazhdeniya N’yutona-Rikhmana. Vestnik Ivanovskogo gosudarstvennogo universiteta. Estestvennye, obshchestvennye nauki. 2010;(2):70–75. (In Russ).
  5. Kaliszan M, Hauser R, Kernbach-Wighton G. Estimation of the time of death based on the assessment of post mortem processes with emphasis on body cooling. Leg Med (Tokyo). 2009;11(3):111–117. doi: 10.1016/j.legalmed.2008.12.002
  6. Rainy H. On the cooling of dead bodies as indicating the length of time that has elapsed since death. Glasgow Med J. 1869;1(3):323–330.
  7. Kuzovkov AV, Vavilov AYu. Diagnostics of prescription of death of the person in the early posthumous period in the noninvasive thermometric way. Problemy ekspertizy v meditsine. 2014;14 (4):24–27. (In Russ).
  8. Kaliszan M, Hauser R, Kaliszan R, et al. Verification of the exponential model of body temperature decrease after death in pigs. Exp Physiol. 2005;90(5):727–738. doi: 10.1113/expphysiol.2005.030551

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Model curves of cadaver cooling and ambient temperature calculated on the basis of a polynomial approximation of the 4th degree.

Download (756KB)
3. Fig. 2. Start window of the Warm Bodies NRN application with a noneditable drop-down list of options for the presence or absence of changes in the ambient temperature for the previous two days before the discovery of the corpse and text fields for entering data on the dynamic thermometry of the corpse and external environment and errors of measuring instruments.

Download (651KB)

Copyright (c) 2021 Nedugov G.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies