BONE TISSUE DESTRUCTION AND REGENERATION: FORENSIC MEDICAL ASSESSMENT

封面

如何引用文章

全文:

详细

Bone regeneration of patients with osteoporosis takes significantly longer than the rehabilitation period of individuals without bone pathology. This is due to the predominance of destructive processes in the setting of osteoblastic reaction weakened by osteoporosis, persistent inflammatory reactions, as well as proliferating connective tissue.

Aim. Тo study the nature and dynamics of processes involved in the destruction and regeneration of bone tissue under various conditions, taking forensic medical assessment into account.

Material and methods. We studied the autopsy and biopsy material of bone tissue using clinical-instrumental and histological research methods.

Results. Using atomic force microscopy, it was found that in individuals with osteoporosis the formation of endosteal callus exhibits features associated with the impaired interlacing of collagen fibres due to the expanded space between them, and, as a result, an impaired connection between osseous structures with a low level of mineralisation.

Conclusion. In accordance with paragraph 24 of Order 194n On the Approval of Medical Criteria for Determining the Severity of Harm to Human Health verified systemic osteoporosis that was the setting for the fracture, which in fact is a pathological fracture, should not be considered as damage to health.

作者简介

V. Konev

Omsk State Medical University

编辑信件的主要联系方式.
Email: vpkonev@mail.ru

Vladimir P. Konev, Dr. Sci. (Med.), Prof., Departmental Head, Department of Forensic Medicine and Legal Studies

SPIN-код: 9195-0420, AuthorID: 349447

俄罗斯联邦

S. Moskovskiy

Omsk State Medical University

Email: moscow-55@mail.ru

Sergey N. Moskovskiy, Cand. Sci. (Med.), Assoc. Prof., Department of Forensic Medicine and Legal Studies

SPIN-код: 1180-1435, AuthorID: 645116

俄罗斯联邦

A. Krivoshein

Omsk State Medical University

Email: vpkonev@mail.ru

Artem E. Krivoshein, Cand. Sci. (Med.), Assoc. Prof., Department of Traumatology and Orthopedics

SPIN-код: 4331-2422, AuthorID: 813568

俄罗斯联邦

Yu. Shishkina

Omsk State Medical University

Email: yulia_sh_25@mail.ru

Yuliya O. Shishkina, Research Assistant, Department of Forensic Medicine and Legal Studies

SPIN-код: 9694-6875, AuthorID: 988575

俄罗斯联邦

A. Korshunov

Omsk State Medical University

Email: korshunovas@mail.ru

Andrey S. Korshunov, Research Assistant, Department of Maxillofacial Surgery

SPIN-код: 1111-1502, AuthorID: 928078

俄罗斯联邦

V. Goloshubina

Omsk State Medical University

Email: vikulka03@mail.ru

Viktoria V. Goloshubina, Cand. Sci. (Med.), Assoc. Prof., Department of Outpatient Therapy and Internal Diseases

SPIN-код: 8047-1506, AuthorID: 779844

俄罗斯联邦

V. Sorokina

Omsk State Medical University

Email: sorokvv@yandex.ru

Veronika V. Sorokina, Cand. Sci. (Med.), Assoc. Prof., Department of Forensic Medicine and Legal Studies

SPIN-код: 3171-4160, AuthorID: 441176

俄罗斯联邦

参考

  1. Аврунин А. С., Корнилов Н. В., Иоффе И. Д. Адаптационные механизмы костной ткани и регуляторно-метаболический профиль организма. Морфология. 2001;120(6):7–12.
  2. Камилов Ф. Х., Фаршатова Е. Р., Еникеев Д. А. Клеточно-молекулярные механизмы ремоделирования костной ткани и ее регуляция. Фундаментальные исследования. 2014;7–4:836–842.
  3. Конев В. П., Коршунов А. С., Московский С. Н., Шестель И. Л., Серов Д. О., Шишкина Ю. О. и др. Исследование минерального компонента и органического матрикса костной ткани с использованием метода атомно-силовой микроскопии. Практическая медицина. 2018;1(112):168–171.
  4. Конев В. П., Московский С. Н., Коршунов А. С., Шестель И. Л., Голошубина В. В. Алгоритмы использования современных подходов при микроскопичес ком исследовании для судебно-медицинских целей.Вестник судебной медицины. 2018;7(1):50–55.
  5. Кузнецова Т. Г. Наноструктурная организация минерального матрикса костной ткани. Проблемы здоровья и экологии. 2008;2(8):107–112.
  6. Kallai I., Mizrahi O., Tawackoli W., Gazit Z., Pelled G., Gazit D. Microcomputed tomography-based structural analysis of various bone tissue regeneration models. Nat Protoc. 2011;6(1):105–110.
  7. Roschger P., Gupta H. S., Berzanovich A., Ittner G., Dempster D. W., Fratzl P., et al. Constant mineralization density distribution in cancellous human bone. Bone. 2003;32(3):16–23.
  8. Tong W., Glimcher M. J., Katz J. L., Kuhn L., Eppell S. J. Size and shape of mineralites in young bovine bone measured by atomic force microscopy. Calcif Tissue Int. 2003;75(59):2–8.
  9. Suvorova E. I., Petrenko P. P., Buffat P. A. Scanning and Transmission Electron Microscopy for Evaluation of Order/Disorder in Bone Structure. Scanning. 2007;29:162–170.
  10. Hassenkam T., Fantner G., Cutroni J. A., Weaver C., Hansma P. K. High-resolution AFM imaging of intact and fractured trabecular bone. Bone. 2004;35(1):4–10.
  11. Kuangshin T., Hang J. Q., Ortis C. Effect of mineral content on the nanoindentation properties and nanoscale deformation mechanisms of bovine tibial cortical bone. J. Materials science: Materials in medicine. 2005;16(8):1–12.
  12. Su X., Sun K., Cui F. Z., Landis W. J. Organization of apatite crystals in human woven bone. Bone. 2003;32(2):150–162.

版权所有 © Konev V.P., Moskovskiy S.N., Krivoshein A.E., Shishkina Y.O., Korshunov A.S., Goloshubina V.V., Sorokina V.V., 2020

Creative Commons License
此作品已接受知识共享署名-非商业性使用 4.0国际许可协议的许可。
##common.cookie##