Electrophysiological markers of cognitive control in the Stroop task: analysis of event-related potentials

Cover Page

Cite item

Full Text

Abstract

Cognitive control plays a key role in regulating behavior and suppressing automated responses, especially in conditions of cognitive conflict. Its mechanisms allow for the suppression of stereotypical reactions and the direction of attention towards achieving set goals. Cognitive control is particularly important in situations where it is necessary to overcome interference between competing stimuli. This study focused on the neurophysiological markers of conflict information processing. To achieve the research objectives, the electroencephalography (EEG) method was employed. The classical Stroop task was used as the experimental paradigm, which models situations of cognitive conflict. As a result, this research analyzed event-related potentials (ERPs) in the Stroop task to study the neurophysiological mechanisms of conflict information processing. The experiment involved 36 participants, whose ERPs were analyzed to identify the following components: N2 (conflict monitoring), N400 (interference suppression), and the late positive component (LPC), associated with conflict resolution. The results showed that the N2 component demonstrated a significant increase in amplitude under conflict stimuli, confirming its association with activation of the anterior cingulate cortex (ACC) in conflict detection. The N400 component appeared as a pronounced negative wave in centro-parietal regions, indicating its involvement in suppression mechanisms. LPC, in turn, showed higher amplitude during conflict resolution, indicating the mobilization of cognitive resources for task control. Thus, the obtained data supports the theory of two-phase cognitive control, where the early phase (N2) is responsible for conflict detection, the middle phase (N400) is related to interference suppression, and the late phase (LPC) reflects conscious information processing and adaptation. This research complements existing data on the neurophysiological bases of cognitive control and opens avenues for further investigation of individual differences and the influence of external factors on the effectiveness of conflict information processing.

References

  1. Braver T.S. The variable nature of cognitive control: A dual mechanisms framework // Trends in Cognitive Sciences. 2012. V. 16. No. 3. P. 106-113.
  2. Стародубцев А.С. Влияние когнитивного контроля на эффект Струпа // Петербургский психологический журнал. 2018. № 24. С. 40-62. EDN: YRRUPR.
  3. Botvinick M.M., Braver T.S., Barch D.M., Carter C.S., Cohen J.D. Conflict monitoring and cognitive control // Psychological Review. 2001. V. 108. No. 3. P. 624-652. EDN: GZRQQT.
  4. Hanslmayr S., Pastötter B., Bäuml K.H., Gruber S., Wimber M., Klimesch W. The electrophysiological dynamics of interference during the Stroop task // Journal of Cognitive Neuroscience. 2008. V. 20. No. 2. P. 215-225.
  5. Coderre E.L., Conklin K., van Heuven W.J.B. Electrophysiological measures of conflict detection and resolution in the Stroop task // Brain Research. 2011. V. 1413. P. 51-59. doi: 10.1016/j.brainres.2011.07.017. EDN: XZTIVU.
  6. Iannaccone R., Hauser T.U., Ball J., Brandeis D., Walitza S., Brem S. Conflict monitoring and error processing: New insights from simultaneous EEG-fMRI // NeuroImage. 2015. V. 105. P. 395-407.
  7. van Veen V., Carter C.S. The timing of action-monitoring processes in the anterior cingulate cortex // Journal of Cognitive Neuroscience. 2002. V. 14. No. 4. P. 593-602.
  8. Donohue S.E., Appelbaum L.G., McKay C.C., Woldorff M.G. The neural dynamics of stimulus and response conflict processing as a function of response complexity and task demands // Neuropsychologia. 2016. V. 84. P. 14-28.
  9. Larson M.J., Kaufman D.A., Perlstein W.M. Neural time course of conflict adaptation effects on the Stroop task // Neuropsychologia. 2009. V. 47. No. 3. P. 663-670.
  10. Yeung N., Botvinick M.M., Cohen J.D. The neural basis of error detection: Conflict monitoring and the error-related negativity // Psychological Review. 2004. V. 111. No. 4. P. 931-959.
  11. Liotti M., Woldorff M.G., Perez R., Mayberg H.S. An ERP study of the time course of the Stroop effect // Neuropsychologia. 2000. V. 38. No. 5. P. 701-711. doi: 10.1016/S0028-3932(99)00106-2. EDN: YEPGXP.
  12. Bialystok E. The bilingual adaptation: How minds accommodate experience // Psychological Bulletin. 2017. V. 143, No. 3. P. 233-262.
  13. Kerns J.G., Cohen J.D., MacDonald A.W., Cho R.Y., Stenger V.A., Carter C.S. Anterior cingulate conflict monitoring and adjustments in control // Science. 2004. V. 303. No. 5660. P. 1023-1026. EDN: GRCJOL.
  14. van Veen V., Carter C.S. The timing of action-monitoring processes in the anterior cingulate cortex // Journal of Cognitive Neuroscience. 2002. V. 14. No. 4. P. 593-602.
  15. Carter C.S., Braver T.S., Barch D.M., Botvinick M.M., Noll D., Cohen J.D. Anterior cingulate cortex, error detection, and the online monitoring of performance // Science. 1998. V. 280. No. 5364. P. 747-749. EDN: ENLGOJ.
  16. Milham M.P., Banich M.T., Claus E.D., Cohen N.J. Practice-related effects demonstrate complementary roles of anterior cingulate and prefrontal cortices in attentional control // NeuroImage. 2003. V. 18. No. 2. P. 483-493.
  17. Leung H.C., Skudlarski P., Gatenby C., Peterson B.S., Gore J.C. An event-related functional MRI study of the Stroop color word interference task // Cognitive Brain Research. 2000. V. 12. No. 2. P. 327-340.
  18. Larson M.J., Clayson P.E., Clawson A. Making sense of all the conflict: A theoretical review and critique of conflict-related ERPs // International Journal of Psychophysiology. 2014. V. 93. No. 3. P. 283-297.
  19. Banich M.T. Executive function: The search for an integrated account // Current Directions in Psychological Science. 2009. V. 18. No. 2. P. 89-94.
  20. Gratton G., Cooper P., Fabiani M., Carter C.S., Karayanidis F. Dynamics of cognitive control: Theoretical bases, paradigms, and a view for the future // Psychophysiology. 2017. V. 54. No. 1. P. 6-35.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).