The "machine translation + post-machine translation editing" model on the YiCAT platform: using the example of the discipline "Stylistic post-machine text editing" for first-year graduate students of the Higher School of Translation of Moscow State University

Cover Page

Cite item

Full Text

Abstract

In this article, the author analyzes the process of machine translation and post-machine editing by Chinese students in classes on the discipline "Stylistic post-machine text editing" using the YiCAT translation platform, which uses a model of combining machine translation and post-machine editing in order to organize the educational process and allocate study time. In 2017, the Russian government approved the "Digital Economy Plan of the Russian Federation", as a result of which the digitalization process gradually penetrated into all scientific spheres. The author of the article concludes that Russian universities should pay more attention to teaching machine translation and post-machine translation editing. In addition, the article presents the idea that the translation departments of modern universities should focus on the introduction and application of translation technologies and the latest translation tools in the framework of teaching translation skills. There are only a few hundred articles in Russia dealing with the specifics of machine translation. Most of them are devoted to the study of existing limitations, development opportunities and ways to improve machine translation systems. At the same time, there are extremely few articles dealing with the features of post-machine editing of the translation text. The number of such articles does not exceed several dozen. Thus, there are many challenges in the field of post-machine translation editing research that should be addressed as soon as possible so that the field of post-machine translation editing can correspond to the era of artificial intelligence. At the same time, Russian universities should pay attention to the teaching of disciplines involving machine translation tools and post-machine editing skills. Large translation faculties should actively use translation technologies and machine translation tools in the classroom, add new academic disciplines implying the familiarization and application of such technologies and tools by students, as well as integrate such disciplines into the framework of existing training programs for specialists in the field of translation. All this will allow universities to form a reliable basis for the education of modern and qualified specialists who meet the requirements of the new era.

About the authors

Jingpeng Liu

Email: ljpesti@mail.ru

References

  1. 肖志清,金鸣.国内机器翻译译后编辑研究现状、问题与展望——基于中国知网数据库(1995—2022 年)[J]. 民族翻译,2022(04):68-76.) (Сяо Чжицин, Цзинь Мин. Современное состояние, проблемы и перспективы исследований постмашинного редактирования перевода в Китае: на основе базы данных CNKI (1995–2022 гг.). Национальный перевод. 2022 (04): 68–76).
  2. Гарбовский, Н. К., Костикова О. И. Интеллект для перевода: искусный или искусственный? // Вестн. Моск. ун-та. Сер. 22.Теория перевода. 2019. №4. С. 3-25.
  3. 王华树, 刘世界.人工智能时代翻译技术转向研究[J]. 外语教学, 2021(05):42. (Ван Хуашу, Лю Шицзе. Изменения в технологии перевода в эпоху искусственного интеллекта. Обучение иностранным языкам. 2021 (05): 42).
  4. 程维,魏子杭.翻译技术教学中的高阶思维培养 [J].上海翻译,2021(3):39-44.(Чэн Вэй, Вэй Цзыхан. Воспитание развитого мышления в преподавании технологиям перевода. Шанхайский перевод. 2021(3): 39-44.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).