Proactive VAT risk management system in the context of digitalization: problems, solutions and prospects.

Cover Page

Cite item

Full Text

Abstract

The relevance of the study is due to the importance of developing and implementing pro-active tax administration systems capable of predicting and reducing tax risks for the state based on real data. The subject of the study is the system of VAT tax administration in the Russian Federation in the conditions of digitalisation and the risks associated with its functioning. The aim of the work is to substantiate the ways of improving VAT tax administration in the conditions of digitalisation through the formation of a proactive system of tax risk management of the state, based on the application of a scenario approach to the forecasting of tax revenues, considering the influence of relevant factors. The paper substantiates the proposals to create a more effective mechanism of VAT tax risk management based on forecasting models and scenarios. Special economic and mathematical methods were used for their construction: regression analysis, construction of autoregressive model with time lags and error correction models. To implement the proactive VAT risk management system, a software module – ASK VAT-2 – is proposed, integrating both strategic and operational decision-making. Its use will allow tax authorities to improve the automation of administration processes, reduce the cost of audits and focus on companies with a high level of tax risks. The distinctive feature of the proposed approach is that the system developed on its basis can predict VAT tax risks and taking appropriate preventive measures. The introduction of this system will contribute to the improvement of tax risk management of the state, increase the efficiency of the tax authorities and ensure more stable tax revenues to the budget. The direction of further research is to build models of differentiated groups of similar enterprises and individual large taxpayers using big data and artificial intelligence.

About the authors

Maksim Sergeevich Balakin

Email: msbalakin@fa.ru

References

  1. Allingham M.G., Sandmo A. Income tax evasion: A theoretical analysis. Journal of Public Economics. 1972; 1(3-4): 323-338.
  2. Battiston P., Gamba S., Santoro A. Machine learning and the optimization of prediction-based policies. Technological Forecasting & Social Change. 2024; 199: 123080. doi: 10.1016/j.techfore.2023.123080.
  3. Daly S. The OMC, intelligent accountability and the monitoring of national tax authorities. Modern Law Review. 2022; 85(5): 1109-1135.
  4. Fjeldstad O.-H., Schulz-Herzenberg C., Sjursen I.H. People's views of taxation in Africa: A review of research on determinants of tax compliance. Afrobarometer Working Paper. 2012;(143).
  5. Guseva T.A., Smetanina E.E., Izotov A.V. Features of the development of tax legal relations in the context of digitalization. Advances in Economics, Business and Management Research. 2020; 156: 569-573.
  6. Lugarić T.R. The Cooperative Compliance Model in Taxation: What is the Future? Intertax. 2019; 47(6/7): 570-580.
  7. Nembe J.K., Atadoga J.O., Mhlongo N.Z., Falaiye T., Olubusola O., Daraojimba A.I., Oguejiofor B.B. The Role of Artificial Intelligence in Enhancing Tax Compliance and Financial Regulation. Finance & Accounting Research Journal. 2024; 6(2): 241-251.
  8. Potka-Soininen T. Co-operative Compliance in Taxation of Large Corporations in Finland: Process and Outcomes. Jyväskylä: Jyväskylä University School of Business and Economics, University of Jyväskylä; 2022.
  9. Slemrod J. Tax Compliance and Enforcement. Journal of Economic Literature. 2019; 57(4): 904-954.
  10. Soled J., DeLaney Th.K. Predictive Analytics and the Tax Code. Florida State University Law Review. Forthcoming. 2023. Available at SSRN: https://ssrn.com/abstract=4441446.
  11. Анисимова А.А. Методы совершенствования цифровых налоговых сервисов в современной практике налогового администрирования // Налоги и налогообложение. 2021. № 1. С. 71-80. doi: 10.7256/2454-065X.2021.1.35283 URL: https://nbpublish.com/library_read_article.php?id=35283
  12. Колчин С.П., Анисимова А.А. Вовлечение налогоплательщиков в цифровую налоговую среду: инструменты поведенческой экономики // Налоги и налогообложение. 2020. № 5. С. 76-87. doi: 10.7256/2454-065X.2020.5.33652 URL: https://nbpublish.com/library_read_article.php?id=33652
  13. Колчин С.П., Анисимова А.А. Развитие цифровых налоговых сервисов в России на фоне общемировых трендов // Налоги и налогообложение. 2020. № 2. С. 40-51. doi: 10.7256/2454-065X.2020.2.32374 URL: https://nbpublish.com/library_read_article.php?id=32374
  14. Гончаренко Л.И., Богачев С.В. Налоговое администрирование как важный фактор обеспечения улучшения собираемости налогов. Экономика. Налоги. Право. 2024; 17(6): 140-151. doi: 10.26794/1999-849X-2024-17-6-140-151. EDN: OGJHYJ.
  15. Гончаренко М.А., Хацько А.Д. Налоговые инструменты влияния на развитие рынка финансовых услуг. Экономика. Налоги. Право. 2024; 17(5): 115-128. doi: 10.26794/1999-849x-2024-17-5-115-128. EDN: MBYTTK.
  16. Гурнак А.В., Назарова Н.А. Налоговое стимулирование экономического роста в России: проблемы и перспективы // Налоги и налогообложение. 2023. № 1. С. 1-16. doi: 10.7256/2454-065X.2023.1.39483 EDN: LJOGII URL: https://nbpublish.com/library_read_article.php?id=39483
  17. Евсикова Е.В., Коловайло С.А., Кравченко Н.А., Семухин И.Ю. Актуальные вопросы налогового администрирования. Юридический вестник ДГУ. 2022; 42(2): 74-83. doi: 10.21779/2224-0241-2022-42-2-74-83. EDN: NEQLOB.
  18. Мадых А.А., Охтень А.А., Дасив А.Ф., Турлакова С.С. Экономико-математические модели и информационно-коммуникационные технологии развития смарт-промышленности: монография (электронное издание). НАН Украины: Ин-т экономики пром-сти. Киев; 2019. 188 с.
  19. Цепилова Е.С., Будкина Е.С. Эволюция налоговой политики государства в условиях развития клиентоцентричности налоговых органов (на примере НДС). Экономика. Налоги. Право. 2023; 16(2): 119-127. doi: 10.26794/1999-849X-2023-16-2-119-127. EDN: ZCDRVG.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).