Organization of effective management of the stock market on the basis of researching the processes of formation of the value of shares of the issuer companies

Cover Page

Cite item

Full Text

Abstract

The global economic crisis and the socio-economic consequences of the COVID-19 pandemic have a significant impact on the increase in volatility and risks of manipulation of stock asset quotes. The subject of the study is the organization of management of the investment fund process, taking into account non-market mechanisms for manipulating the value of shares of issuing companies. The purpose of the article is to improve the efficiency of managing the stock process based on the stock market model and procedures for fuzzy valuation of the value of shares of issuing companies within this model. The research methodology is based on the application of methods for analyzing economic phenomena and processes, a systematic approach to studying the development of issuing companies and stock markets. Modeling of fund processes is based on fuzzy logic theory and efficiency theory. The principles of stock market idealization and the principles of stock market management in a manipulated information environment are formulated. A model of the stock market is presented, which includes: an ideal model of the stock market, a model of fundamental disturbing factors and a model of stock market manipulation. Within the framework of the stock market model, an economic and mathematical model for estimating the value of shares of issuing companies has been developed, in which the uncertainty of parameters is described by fuzzy numbers. The novelty of the research lies in the formulated concept of factor psychodynamics (including a list of factors, functions of factors, the strength of factors and inertia of factors), which serves as the basis for the stock market model; as well as in the developed methodology for fuzzy valuation of shares of issuing companies. Participants of the stock market, potential investors, owners and acquirers of companies on the basis of the presented model of the stock market have the opportunity to obtain additional information about ongoing stock processes. Fuzzy procedures for estimating the value of shares of issuer companies make it possible to calculate the value of their shares in accordance with various forecast scenarios for the development of companies.

References

  1. Федорова Е.А., Рогов О.Ю., Ключников В.А. Влияние новостей на индекс нефтегазовой отрасли ММВБ: текстовый анализ // Вестник Московского университета. Сер. 6. Экономика. 2018. № 4. С. 79–99.
  2. Чарахчян К.К., Чарахчян В.К. Некоторые аспекты воздействия новостной информации на биржевую оценку эмитентов // Теория и практика общественного развития. 2018. 1 (10). URL: https://doi.org/10.24158/tipor.2018.1.10
  3. Подгорный Б.Б. Информационное поле российского фондового рынка // Вестник экономики, права и социологии. 2018. № 1. С. 205–209.
  4. Podgorny B. The Russian stock market as a social space: a theoretical basis // Economic Annals XXI. 2017. No. 3–4. P. 20–24.
  5. Kriksciuniene D., Sakalauskas V. The impact of public information on stock market fluctuations // Transformations in Business and Economics. 2012. 11 (1). P. 84–99.
  6. Галкин А.С., Гуров И.Н. Студников С.С. Влияние санкций на детерминанты стоимости акций российских компаний // Инновации и инвестиции. 2020. № 3. C. 161–166.
  7. Миркин Я.М. Влияние санкций на финансовые риски российской экономики // Банковские услуги. 2015. № 8. С. 17–24.
  8. Aldhyani T., Alzahrani A. Framework for Predicting and Modeling Stock Market Prices Based on Deep Learning Algorithms // MDPI. 2022. 11. P. 1–19. doi: 10.3390/electronics11193149
  9. Bansal M., Goyal A., Choudhary A. Stock market prediction with high accuracy using machine learning techniques. Procedia Computer Science. 2022. P. 247–265. doi.org/10.1016/j.procs.2022.12.028
  10. Daradkeh K. A hybrid data analytics framework with sentiment convergence and multi-feature fusion for stock trend prediction // MDPI Journal of Electronics. 2022. 11. 1–20. doi.org/10.3390/electronics11020250
  11. Ghosh P., Neufeld A., Sahoo J. Forecasting directional movements of stock prices for intraday trading using LSTM and random forests. Financial Research Letters. 2023. P. 1–8. doi.org/10.48550/arXiv.2004.10178
  12. Kulshreshtha S., Vijayalakshmi A. An ARIMA-LSTM hybrid model for stock market prediction using live data. Journal of Engineering Science and Technology Review, 13(4), 117–123. doi: 10.25103/jestr.134.11
  13. Shah A., Gor M., Meet S., Shah M. A stock market trading framework based on deep learning architectures // Multimedia Tools and Applications. .2022. 81. P. 14153–14171. doi.org/10.1007/s11042-022-12328-x
  14. Vijh M, Chandola D., Tikkiwal V., Kumar A. Stock Closing Price Prediction using Machine Learning Techniques // Procedia Computer Science. 2022. 167. P. 599–606. doi: 10.1016/j.procs.2020.03.326
  15. Zaheer S., Nadeem A., Hussain, S., Algarni A. A Multi Parameter Forecasting for Stock Time Series Data Using LSTM and Deep Learning Model // MDPI-Mathematics. 2023. P. 1-24. doi.org/10.3390/math11030590
  16. Недосекин А. О. Фондовый менеджмент в расплывчатых условиях. СПб: Типография Сезам, 2003.
  17. Bera A., Higgins M. Lee S. Interaction between autocorrelation and conditional heteroskedasticity: a random-coefficient approach // Journal of Business & Economic Statistics. 1992. 10. P. 133–142.
  18. Nelson D. Conditional heteroskedasticity in asset returns: a new approach // Econometrica. 1991. Vol. 59. No. 2. P. 347–370. https://doi.org/0012-9682(199103)59:22.0.CO;2-V
  19. Sentana E. Quadratic ARCH models // Review of Economic Studies. 1995. Vol. 62. No. 4. P. 639–661. doi: 10.2307/2298081
  20. Samuel Tabot. Exploring Volatility Clustering Financial Markets and Its Implication // Journal of economic and social development. 2023. 10(2). P. 81–85.
  21. Yunhao Gu. Efficient Market Hypothesis during COVID-19 Pandemic // AEMPS. 2023. Vol. 26. P. 301-307. doi: 10.54254/2754-1169/26/20230588
  22. Дорохов Е.В. Исследование манипуляций фондовыми активами на примере акций американских высокотехнологичных компаний биржи Nasdaq // Финансы и управление. 2023. № 1. С. 50–68. doi: 10.25136/2409-7802.2023.1.37548 EDN: WBBLRZ URL: https://nbpublish.com/library_read_article.php?id=37548
  23. Zadeh L.A. Fuzzy sets // Information and Control, 1965, vol. 8, N 3, P. 338–353.
  24. Дамодаран А. Инвестиционная оценка: инструменты и методы оценки любых активов. М. Альпина Бизнес Букс, 2008.
  25. Официальный сайт Exxon Mobil Corporation (XOM). Financial results. Electronic resource. URL: https://investor.exxonmobil.com/earnings/financial-results (дата обращения: 12.08.2023).
  26. Официальный сайт Federal Reserve System. Federal Reserve Board – Federal Reserve issues FOMC statement. Electronic resource. URL: https://www.federalreserve.gov/newsevents/pressreleases/monetary20230726a.htm (дата обращения: 12.08.2023).
  27. Нефтегазовые компании США, актуализация оценки. Electronic resource. URL: https://sinara-finance.ru/upload/iblock/755/vh4ja3k9aoqjvrw46on05iprsto7q7ff.pdf (дата обращения: 12.08.2023).
  28. Недосекин А. О. Фондовый менеджмент в расплывчатых условиях. СПб: Типография Сезам, 2003.
  29. Официальный сайт NYSE. Exxon Mobil Corporation XOM. Electronic resource. URL: https://www.nyse.com/quote/XNYS:XOM (дата обращения: 12.08.2023).

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).