The relationship between the level of expected volatility and multipliers in the US stock market

Abstract

The subject of the research of this article is to identify the relationship between financial multipliers and the expected volatility (implied volatility) of shares of companies in the software sector of the United States. The purpose of the work is to investigate and characterize the effects of expected volatility on the undervaluation or overvaluation of company shares. The object of this study are 38 largest companies in the software sector with a capitalization of more than $ 5 billion. Special attention is paid to the nonparametric Tail model, which allows us to identify and confirm the existence of a relationship between the level of expected volatility and the logarithm of the growth rate of the financial multiplier.   The very novelty of the proposed article lies, firstly, in the fact that the analysis was carried out in the coronavirus era, which is timely and interesting, since the Covid-19 pandemic had a serious impact not only on the lives and health of citizens, but also on financial markets. Secondly, interest in this topic cannot weaken due to the constant development and modification of financial markets, which forces investors to develop new and new approaches to evaluating companies for profit. Identifying undervalued companies in the financial market is one of the key goals of analysts and investors, since timely finding companies whose fair value is currently undervalued can bring significantly more income than investing in companies whose stock value is fairly valued. The results achieved within the framework of the conducted research are of practical significance, since they allow us to rank the identified companies with the same level of undervaluation by the value of expected volatility and, thereby, choose the most attractive for investments.

References

  1. Курбацкий А.Н., Манукян С.Г. «Влияние ожидаемых темпов роста прибыли компании на ее текущую оценку на примере рынка акций Соединенных Штатов Америки». Финансы, №12, с.50.
  2. Yarovaya L., Elsayed A., Hammoudeh S.: Determinants of spillovers between Islamic and conventional financial markets: exploring the safe haven assets during the COVID-19 pandemic. Finance Res. Lett., 43. 2021.
  3. Талеб, Нассим Николас. Черный лебедь: под знаком непредсказуемости / Нассим Николас Талеб.-2-е изд., доп.-Москва: КоЛибри, 2013 (Тула: Тульская типография (ОАО)).-735 с.; ISBN 978-5-389-04641-2
  4. Оценка стоимости предприятия (бизнеса) /А.Г. Грязнова, М.А. Федотова, М.А. Эскиндаров, Т.В. Тазихина, Е.Н. Иванова, О.Н. Щербакова. — М.: ИНТЕРРЕКЛАМА, 2003. С.130.
  5. Гладилин А.А., Шматко С.Г. Оценка ценных бумаг на основе мультипликаторов // Экономика. Бизнес. Банки. 2015. № 2 (11). С.5
  6. Kevin Daly Financial Volatility: Issues and Measuring Techniques. Physica A: Statistical Mechanics and its Applications. Pp. 2377–2393.
  7. Engle, Robert F. & Manganelli, Simone, 2001. "Value at risk models in finance," Working Paper Series 75, European Central Bank.
  8. Andrew Patton: «What good is a volatility model?» Quantitative Finance, 2001, vol. 1, issue 2, 237-245
  9. Althouse, Linda Akel; Ware, William B.; Ferron, John M. Detecting Departures from Normality: A Monte Carlo Simulation of a New Omnibus Test Based on Moments. Paper presented at the Annual Meeting of the American Educational Research Association (San Diego, CA, April 13-17, 1998). P.3.
  10. Antonie Kotze: Stock Price Volatility: a primer // The South African Financial Markets Journal. 2005.
  11. Развитие науки и техники: механизмы выбора и реализации приоритетов: сборник статей Международной научно-практической конференции (25 декабря 201г г., г. Омск) В 6 ч. Ч.2. /-Уфа : АЭТЕРНА, 2017. С.108
  12. С.И. Солонин Метод гистограмм // Уральский федеральный университет. Электронное издание. 2014. С.7 URL: https://elar.urfu.ru/bitstream/10995/36132/1/solonin_2_2014.pdf.
  13. Irma Lavagnini, Denis Badocco, Paolo Pastore, Franco Magno Theil–Sen nonparametric regression technique on univariate calibration, inverse regression and detection limits // Talanta. №87. 2011. P.187
  14. H. Theil. A rank-invariant method of linear and polynomial regression analysis. I, II, III // Nederl. Akad. Wetensch., Proc. 1950. Т. 53. P. 389
  15. N. Alp Erilli, Kamil Alakus Non-parametric regression estimation for data with equal values // European Scientific Journal. 2014. vol.10, No.4. P.75

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).