A multifactor model for predicting and managing employee turnover risks at nuclear enterprises

Cover Page

Cite item

Full Text

Abstract

This study examines the process of predicting and managing the risks of voluntary employee turnover at nuclear enterprises. The research focuses on the human resources potential of a high-tech nuclear enterprise. Particular attention is paid to identifying and quantifying risk factors specific to the nuclear industry, such as career path clarity, participation in innovative projects, and working under sensitive conditions, with the development of an interpretable mathematical model. Highly qualified personnel are a key asset for nuclear enterprises, where employee turnover can pose critical risks, including the loss of unique production competencies, reduced safety, and increased operating costs. The objective of the study is to develop a multifactorial model for predicting the individual risk of voluntary employee turnover at nuclear enterprises. The research methodology is based on the analysis of HR management system data. Logistic regression, which ensures highly interpretable results, was used to construct the predictive model. The model was chosen due to its advantages for binary classification problems, such as high interpretability of results, robustness to multicollinearity, and relatively low computational complexity. The study demonstrated that decreased career trajectory clarity increases the risk of dismissal, as does a lack of participation in innovative projects. The developed model allows for segmenting personnel into three risk groups and developing targeted interventions for each category of employee. The key findings include prioritizing organizational, psychological, and career factors over financial incentives. The author's particular contribution lies in the creation of a comprehensive proactive risk management system, including a mechanism for assessing the cost-effectiveness of measures taken. The novelty of the study lies in adapting the survival analysis methodology to the nuclear industry and integrating quantitative forecasts with practical HR strategies. The developed model is an effective tool for HR departments at nuclear enterprises, facilitating the transition from reactive to predictive management of personnel stability.

References

  1. Hancock, J. I., Allen, D. G., Soelberg, C. Collective turnover: a call for research // Annual Review of Organizational Psychology and Organizational Behavior. 2017. Vol. 4. P. 1-14.
  2. Martínez-Córcoles, M., Gracia, F., Tomás, I., Peiro, J. Leadership and employees' perceived safety behaviours in a nuclear power plant: A structural equation model // Safety Science. 2011. Vol. 49, No. 8. P. 1118-1129. doi: 10.1016/j.ssci.2011.03.002
  3. Allen, D. G., Bryant, P. C., Vardaman, J. M. Retaining talent: Replacing misconceptions with evidence-based strategies // Academy of Management Perspectives. 2010. Vol. 24, No. 2. P. 48-64.
  4. Benabou, A., Touhami, F., My Abdelouahed, S. Predicting Employee Turnover Using Machine Learning Techniques // Acta Informatica Pragensia. 2025. Vol. 14. doi: 10.18267/j.aip.255 EDN: PWTICR
  5. Saradhi, V. V., Palshikar, G. K. Employee churn prediction // Expert Systems with Applications. 2011. Vol. 38, No. 3. P. 1999-2006.
  6. Воронова, Н. С., Яковлева, Е. А., Яковлева, Д. Д. Инструменты корпоративного финансирования интегрированной компании атомной отрасли в контексте устойчивого развития // Экономика, предпринимательство и право. 2024. Т. 14, No. 11. С. 6439-6454. doi: 10.18334/epp.14.11.122002 EDN: QRBNPU
  7. Nuclear Power Personnel: Workforce Assessment and Planning [Электронный ресурс] / International Atomic Energy Agency (IAEA). Vienna: IAEA, 2021. (IAEA Nuclear Energy Series). URL: https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1477_web.pdf (дата обращения: 28.09.2025).
  8. Бондаренко, В. А., Пржедецкая, Н. В. Вопросы разработки системы мотивации сотрудников для компаний энергетического сектора // Глобальная ядерная безопасность. 2024. Т. 14, No. 1 (50). С. 101-110. doi: 10.26583/gns-2024-01-13 EDN: XXPMHI
  9. Hosmer, D. W., Lemeshow, S., May, S. Applied survival analysis: regression modeling of time-to-event data. 2nd ed. Hoboken: Wiley-Interscience, 2008. 392 p.
  10. Van der Heijden, G. J., Donders, A. R., Stijnen, T., Moons, K. G. Imputation of missing values is superior to complete case analysis and the missing-indicator method in multivariable diagnostic research: a clinical example // Journal of Clinical Epidemiology. 2006. Vol. 59, No. 10. P. 1102-1109.
  11. Harter, J. K., Schmidt, F. L., Hayes, T. L. Business-unit-level relationship between employee satisfaction, employee engagement, and business outcomes: a meta-analysis // Journal of Applied Psychology. 2002. Vol. 87, No. 2. P. 268-279.
  12. Fitz-enz, J., Mattox, J. R. Predictive analytics for human resources [Электронный ресурс]. Hoboken: John Wiley & Sons, 2014. 256 p. URL: http://repo.darmajaya.ac.id/4065/1/%28Wiley%20and%20SAS%20Business%20Series%29%20Jac%20Fitz-enz%2C%20John%20Mattox%20II%20-%20Predictive%20Analytics%20for%20Human%20Resources-Wiley%20%282014%29.pdf (дата обращения: 28.09.2025).
  13. Kuhn, M., Johnson, K. Applied predictive modeling. New York: Springer, 2013. 600 p. doi: 10.1007/978-1-4614-6849-3 EDN: YFCPUZ
  14. Kleinbaum, D. G., Klein, M. Logistic regression: a self-learning text. 3rd ed. New York: Springer, 2010. 702 p.
  15. Fawcett, T. An introduction to ROC analysis // Pattern Recognition Letters. 2006. Vol. 27, No. 8. P. 861-874.
  16. Hosmer, D. W., Lemeshow, S., Sturdivant, R. X. Applied logistic regression. 3rd ed. Hoboken: John Wiley & Sons, 2013. 528 p.
  17. Youden, W. J. Index for rating diagnostic tests // Cancer. 1950. Vol. 3, No. 1. P. 32-35. doi: 10.1002/1097-0142(1950)3:13.0.co;2-3
  18. Токарева, Ю. А., Гаспарович, Е. О. Стратегическое управление персоналом. Екатеринбург: Изд-во Урал. ун-та, 2024. 296 с. EDN: BOYIGQ
  19. Gerhart, B., Fang, M. Pay for (individual) performance: Issues, claims, evidence and the role of sorting effects // Human Resource Management Review. 2014. Vol. 24, No. 1. P. 41-52.
  20. Mitchell, T. R., Holtom, B. C., Lee, T. W. How to keep your best employees: Developing an effective retention policy // Academy of Management Perspectives. 2001. Vol. 15, No. 4. P. 96-108. EDN: DQONWB
  21. Finnegan, R. P. The Power of Stay Interviews for Engagement and Retention [Электронный ресурс] // Society For Human Resource Management. Alexandria, VA, 2021. 200 p. URL: https://c-suiteanalytics.com/wp-content/uploads/2015/12/The-Power-of-Stay-Interviews-SHRA-10.6.17.pdf (дата обращения: 28.09.2025).
  22. Cascio, W. F., Boudreau, J. W. Investing in people: Financial impact of human resource initiatives. Upper Saddle River: FT Press, 2008. 360 p.
  23. Phillips, J. J., Phillips, P. P. Accountability in human resource management: Connecting HR to business results [Электронный ресурс]. 2nd ed. New York: Routledge, 2019. 398 p. URL: https://roiinstitute.net/wp-content/uploads/2021/06/Accountability-in-Human-Resource-Management-chapter-3.pdf (дата обращения: 28.09.2025).
  24. Chen, T., Guestrin, C. XGBoost: A scalable tree boosting system // Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '16). 2016. P. 785-794.
  25. Borms, L., Multani, M., Bachus, K. [et al.] Using Natural Language Processing to monitor circular activities and employment // Sustainable Production and Consumption. 2024. Vol. 46. P. 42-53. doi: 10.1016/j.spc.2024.02.007 EDN: SKCWHU

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).