Autoimport of a Large Volume Information into a Database Using the Python Programming Language

Cover Page

Cite item

Full Text

Abstract

The article discusses an efficient and automated way to import large amounts of data from Excel tables into a database. In various projects, there are tasks in which the flow of huge data, such as logs of program operations or manual operations performed at work sites, is vital for effective analysis.

Purpose – development of a module for automatic import of a large amount of data from Excel format into a database.

Method or methodology of work: the article discusses a method that implements automatic import of data from Excel tables into a Postgresql database.

Result: developed its own unique module that is able to process huge Excel tables and import them into a Postgresql database without manual operations.

Scope of the results: the data obtained, which are stored in the database, should be used to identify high-yield accounts for subsequent investment.

About the authors

Roman R. Krapivin

Kazan National Research Technical University named after A.N. Tupolev-KAI

Author for correspondence.
Email: Jerichotyrant1@yandex.ru

student

 

Russian Federation, 1, Akademika Koroleva Str., Naberezhnye Chelny, 423814, Russian Federation

Gulnara A. Gareeva

Kazan National Research Technical University named after A.N. Tupolev-KAI

Email: gagareeva1977@mail.ru
SPIN-code: 3279-8465
Scopus Author ID: 36801593200
ResearcherId: M-1728-2015

Head of the Department of Information Systems, Candidate of Pedagogical Sciences, Associate Professor

 

Russian Federation, 1, Akademika Koroleva Str., Naberezhnye Chelny, 423814, Russian Federation

Yuri M. Filatov

Kazan National Research Technical University named after A.N. Tupolev-KAI

Email: Uraura111222@gmail.com

student

 

 

Russian Federation, 1, Akademika Koroleva Str., Naberezhnye Chelny, 423814, Russian Federation

Aigul G. Faizullina

Kazan Federal University Naberezhnochelninsk Institute

Email: dlya_pisem_t@mail.ru

Lecturer, College of Engineering and Economics

 

Russian Federation, 68/19, Prospekt Mira, Naberezhnye Chelny 423812, Russian Federation

Irina Yu. Myshkina

Kazan Federal University Naberezhnochelninsk Institute

Email: mirinau@mail.ru

Associate Professor, Department of System Analysis and Informatics

 

Russian Federation, 68/19, Prospekt Mira, Naberezhnye Chelny 423812, Russian Federation

References

  1. Loginova E.V. Necessity of studying information flows of an enterprise / E.V. Loginova, T.A. Sarieva // Problems of Modern Science and Education, 2017. - № 2. - pp. 45-48.
  2. Methods and models of research of complex systems and big data processing: Monograph / I.Y. Paramonov, V.A. Smagin, N.E. Kosykh, A.D. Khomonenko; edited by V. A. Smagin and A. D. Khomonenko. - St. Petersburg: Lan’, 2020. - 236 p.
  3. Bengforth, B. Applied textual data analysis in Python. Machine learning and creating natural language processing applications / B. Bengforth. - St. Petersburg: Peter, 2019. - 368 p.
  4. Ponomareva L.A., Chiskidov S.V., Ronzhina I.A., Golosov P.E. Designing computer learning systems: Monograph. Ministry of Education and Science of the Russian Federation, Russian Academy of National Economy and Public Administration, Moscow State Pedagogical University. Tambov: Consulting company Yukom, 2018. 120 p.
  5. Prokofieva E.N. Assessment of the quality of information flow management in organizations / E.N. Prokof’eva, A.V. Vostrikova // Vestnik RMAT, 2017. - 330 p.
  6. Prohorenok N.A. Python 3 and PyQt. Development of applications. - St. Petersburg: BHV-Peterburg, 2012. - 704 p.
  7. Samoylova I. A. Technologies of big data processing / Young scientist. - 2017. - № 49 (183). - pp. 26-28.
  8. Models and methods of research of information systems: monograph / A.D. Khomonenko, A.G. Basyrov, V.P. Bubnov [et al]. - Saint Petersburg: Lan’, 2019. - 204 p.
  9. Kanaev K.A., Faleeva E.V., Ponomarchuk Y.V. Comparative analysis of data exchange formats used in applications with client-server architecture // Fundamental Research. - 2015. - № 2-25. - pp. 5569-5572.
  10. Zlatopolsky D.M. Fundamentals of programming in the Python language. - Moscow: DMK Press, 2017. - 284 p.
  11. Vinogradova E. Yu. Intelligent information technology - theory and methodology of building information systems: monograph / Ministry of Education and Science of the Russian Federation, Ural State. Economics University. - Ekaterinburg: Publishing house of the Ural State University of Economics, 2011. - 263 p.
  12. Belkova A.L. Mastering the work with relational databases in MS Excel 2013 / A.L. Belkova, S.N. Leora // Theory and practice of education in the modern world: proceedings of the VI International. scientific. conf. - St. Petersburg: Zanevskaya Square, 2014. - pp. 349-356.
  13. Worsley, J. PostgreSQL. For professionals / J. Worsley, J. Drake. - M.: SPb: Peter, 2002. - 496 p.
  14. Hans-Jürgen Schönig Mastering PostgreSQL 13 - Fourth Edition: Build, administer, and maintain database applications efficiently with PostgreSQL 13. - Packt Publishing, – 2020. - 476 p.
  15. Baji Shaik, Avinash Vallarapu Beginning PostgreSQL on the Cloud: Simplifying Database as a Service on Cloud Platforms. – Apress, - 2018. - 381 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Krapivin R.R., Gareeva G.A., Filatov Y.M., Faizullina A.G., Myshkina I.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).