Problems of Surface Defectoscopy of Metals using Machine Learning and Ways for Their Solutions

封面

如何引用文章

全文:

详细

Rejection of metal products is an important stage of the production process aimed at ensuring the best quality of the final product. Traditional rejection methods, based on visual inspection or the use of simple automated systems, have their limitations and disadvantages, such as low speed and accuracy of defect classification. The paper examines the possibility of using various machine learning methods to classify defects in metal products. A comparative analysis of these algorithms, as well as their effectiveness, is carried out in order to determine the most suitable approach to the automatic rejection of metal products.

作者简介

Kirill Rybakov

Kazan State Power Engineering University

编辑信件的主要联系方式.
Email: kotya.ribak@mail.ru
ORCID iD: 0009-0005-3781-5259

2nd year master's student of the Department of Information Technologies and Intelligent Systems

俄罗斯联邦, 51, Krasnoselskaya Str., Kazan, 420066, Russian Federation

Renat Khamitov

Kazan State Power Engineering University

Email: hamitov@gmail.com
ORCID iD: 0000-0002-9949-4404

Associate Professor of the Department of Information Technologies and Intelligent Systems, Candidate of Technical Sciences

俄罗斯联邦, 51, Krasnoselskaya Str., Kazan, 420066, Russian Federation

参考

  1. Alekseev I.P., Lapteva T.V. Prospects of application of capsule neural networks in object recognition on images. KIP i avtomatika: obsluzhivanie i remont, 2022, no. 1, pp. 50-53.
  2. Shorina T.V., Khamitov R.M. Visual image recognition by means of the Python programming language. Nauchno-tekhnicheskiy vestnik Povolzh'ya, 2023, no. 12, pp. 639-641.
  3. Saltanaeva E.A., Kutsenko S.M. Construction of pattern recognition systems based on artificial intelligence. Nauchno-tekhnicheskiy vestnik Povolzh'ya, 2023, no. 12, pp. 376-378.
  4. Fakhrutdinov R.R., Khamitov R.M. Research of methods of defects recognition on the image for objects of fuel and energy complex. Collection of scientific articles of the VIII International Scientific Conference. Kazan, 2021, pp. 126-129.
  5. Krzysztof Lalik, Mateusz Kozek, Paweł Gut, Marek Iwaniec, Grzegorz Pawłowski. June 22, 2022 SVM Algorithm for Industrial Defect Detection and Classification. URL: https://www.matec-conferences.org/articles/matecconf/abs/2022/04/matecconf_mms2020_04004/matecconf_mms2020_04004.html (accessed 15.02.2023).
  6. Shuai Wang, Xiaojun Xia, Lanqing Ye, Binbin Yang. Automatic Detection and Classification of Steel Surface Defect Using Deep Convolutional. February 26, 2021. URL: Neural Networks https://www.mdpi.com/2075-4701/11/3/388 (accessed February 18, 2023).
  7. Suvdaa B., Ahn J., Ko J. Steel surface defects detection and classification using SIFT and voting strategy. April 2, 2012. URL:https://www.researchgate.net/publication/293134660_Steel_surface_defects_detection_and_classification_using_SIFT_and_voting_strategy (accessed 14.02.2023).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Rybakov K.M., Khamitov R.M., 2024

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).