Influence of dynamic properties of the process module on vertical vibrations of the wheel axis

Cover Page

Cite item

Full Text

Abstract

Background. The article examines the influence of the dynamic properties of the technological module on the process of forming vertical vibrations of the wheel axis when moving along a given bearing surface. The following methods were used in the study: a mathematical model of half of the technological module, a bus model. The amplitude-frequency characteristics of the system and spectral densities for vertical displacement and acceleration of the wheel axis for four configurations are obtained when changing the parameter characterizing the dynamic properties of technological modules. Statistical dynamics methods were used to analyze the dependencies. With an increase in the mass of the technological module from 1429 kg to 3929 kg (to transfer the tractor from traction class 1.4 to traction class 2 and 3, respectively), when using 15.5R38 tires, there is a decrease in the natural frequency of the technological module from 24 to 14 rad/s and an increase in the maximum spectral density from 0.5*10-3 to 4*10-3. With an increase in the mass of the technological module from 2343 kg to 4847 kg (to transfer the tractor from traction class 3 to traction class 4 and 5, respectively), when using tires 21.3R24, there is a decrease in the natural oscillation frequency of the technological module from 18 to 12 rad/s and an increase in the maximum spectral density from 1.5 * 10-3 to 6*10-3. The spectral density (characterizing the distribution of process energy) of vertical vibrations of the support surface in the frequency range (0...5 rad/s) coincides with the spectral density of the wheel axis of technological modules of all configurations.

Purpose. Obtaining and analyzing statistical characteristics describing the dynamic properties of technological modules when moving along a given support surface.

Methodology. In the article were used the methods of mathematical modeling and also statistical methods of the analysis.

Results. Statistical characteristics describing the dynamic properties of technological modules when moving along a given support surface are obtained.

Practical implications. It is advisable to apply the results obtained to organizations and institutions involved in the development of methods and tools for studying the dynamics of tractors and automobiles.

About the authors

Yuri P. Kornyushin

Bauman Moscow State Technical University, Kaluga Branch

Author for correspondence.
Email: theroland@yandex.ru
SPIN-code: 4391-3096

Professor of the Department "Automatic Control Systems", Doctor of Technical Sciences

Russian Federation, 2, Bazhenova Str., Kaluga, 248000, Russian Federation

Maksim V. Sidorov

Bauman Moscow State Technical University, Kaluga Branch

Email: sidorov-kaluga@yandex.ru
ORCID iD: 0000-0002-6686-2282
SPIN-code: 6131-3669
Scopus Author ID: 57211752346

Associate Professor of the Department "Wheeled vehicles and Applied Mechanics", Candidate of Technical Sciences

Russian Federation, 2, Bazhenova Str., Kaluga, 248000, Russian Federation

References

  1. Lavrov, A. V., Sidorov, M. V., & Voronin, V. A. (2021). Technological module for peasant farms. Sel'skij Mekhanizator, (3), 5. EDN: https://elibrary.ru/WKMHWK
  2. Skrynnikov, A. V., Shikhin, A. V., Popov, A. A., & Sidorov, V. N. (2022). Wheel-Tire Interaction Modeling with Support Base of Mobile Module. Don Engineering Bulletin, (6). Retrieved from ivdon.ru/ru/magazine/archive/n6y2022/7695 EDN: https://elibrary.ru/RIGKUW
  3. Pevzner, Ya. M., Gridasov, G. G., & Konev, A. D., et al. (1979). Car Oscillations. Testing and Research. Moscow: Mashinostroenie. 208 p.
  4. Khachaturov, A. A., Afanasiev, V. L., & Vasilev, V. S., et al. (1976). Dynamic Behavior of Driver-Vehicle-Wheel-Road System. Moscow: Mashinostroenie. 535 p.
  5. Sidorova, A. V., Stepin, P. I., & Sidorov, V. N. (2020). Simulation of Mass Center Oscillation of Wheeled Machine Using Simulink Software. Don Engineering Bulletin, (4). Retrieved from ivdon.ru/ru/magazine/archive/n4y2020/6395 EDN: https://elibrary.ru/VVKADR
  6. Sidorov, M. V., Sudeyko, O. V., & Sidorov, V. N. (2021). Simulation of vibration loading of passenger seats in buses used for intra-farm transportation of agricultural enterprises. AgroEcoInfo: Electronic Scientific and Industrial Journal, (2). Retrieved from http://agroecoinfo.ru/STATYI/2021/2/st_216.pdf EDN: https://elibrary.ru/NIUORD
  7. Kotiev, G. O., & Sarach, E. B. (2010). Complex Suspension System for Highly Mobile Two-Section Tracked Vehicles. Moscow. 184 pp. EDN: https://elibrary.ru/ZCLELL
  8. Lur'e, A. B. (1981). Statistical Dynamics of Agricultural Units. Moscow. 382 p.
  9. Popov, V. B. (2005). Mathematical modeling of mobile agricultural equipment in transport crossing mode. Bulletin of Gomel State Technical University named after P. O. Sukhoi, (3), 13–18. EDN: https://elibrary.ru/PYVSMT
  10. Projecting all-wheel drive wheel machines. (2008). Moscow. Book 1. 496 p.
  11. Zhileykin, M. M., Kotiev, G. O., & Sarach, E. B. (2018). Mathematical Models of Transport Systems: Guidelines. Moscow: BMSTU. Retrieved from https://e.lanbook.com/book/103321
  12. Boykov, V. P., & Belkovskii, V. N. (1988). Tires for tractors and agricultural machinery. Moscow: Agropromizdat. 240 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Kornyushin Y.P., Sidorov M.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).