Prompts for generative artificial intelligence in legal discourse
- Autores: Kirpichev A.E.1
-
Afiliações:
- Russian State University of Justice
- Edição: Volume 28, Nº 4 (2024)
- Páginas: 906-918
- Seção: LAW AND DIGITAL TECHNOLOGIES
- URL: https://journals.rcsi.science/2313-2337/article/view/327222
- DOI: https://doi.org/10.22363/2313-2337-2024-28-4-906-918
- EDN: https://elibrary.ru/ILOQXB
- ID: 327222
Citar
Resumo
The development of generative models of artificial intelligence (AI) poses new challenges for legal science and practice. This requires understanding of the legal nature of prompts (queries to AI) and development of appropriate legal regulation. The article aims to determine the legal significance of prompts and outlines the prospects for their research in the context of the interaction between law and AI. The study is based on the analysis of contemporary scientific literature devoted to the problems of legal regulation of AI, as well as investigation of the first cases of the use of generative AI models in legal practice and education. Methods of legal qualification, comparative legal analysis, and legal modeling are applied. Prompts are qualified as legal actions (legal facts in the strict sense), which opens the path to addressing the applicability of copyright criteria to them. The potential and risks of using prompts in legal practice and education are identified, and the need for standardizing prompts and developing specialized methods for teaching lawyers to interact with AI is substantiated. Prompts, as a tool for human-AI interaction, represent a fundamentally important subject of legal research, upon which the prospects for AI application in law largely rely. The article concludes that interdisciplinary and international studies are necessary to unite the efforts of legal professionals, AI specialists, and the generative models themselves in developing optimal legal solutions.
Sobre autores
Alexander Kirpichev
Russian State University of Justice
Autor responsável pela correspondência
Email: aekirpichev@yandex.ru
ORCID ID: 0000-0002-0043-5069
Código SPIN: 4949-0036
Doctor of Legal Sciences, Associate Professor, Head of the Department of Business and Corporate Law, Full Professor of the Department of Business and Corporate Law
69 Novocheremushkinskaya str., Moscow, 117418, Russian FederationBibliografia
- Belov, S.D., Zrelova, D.P., Zrelov, P.V. & Korenkov, V.V. (2020) Overview of Methods for Automatic Natural Language Text Processing. System Analysis in Science and Education. (3), 8-22. https://doi.org/10.37005/2071-9612-2020-3-8-22 (in Russian).
- Callister, P.D. (2020) Law, Artificial Intelligence, and Natural Language Processing: A Funny Thing Happened on the Way to My Search Results. Law Library Journal. 112(2), 161-212.
- Cesarini Sforza, W. (1930) Ex facto oritur ius. In: Del Vecchio, G. Studi filosofico-giuridici dedicati a Giorgio del Vacchio: nel XXV anno di insegnamento (1904-1929). pp. 12-12.
- Choi, J. H., Hickman, K. E., Monahan, A. B. & Schwarcz, D.B. (2022) ChatGPT Goes to Law School. Journal of Legal Education. 71(3), 387-400.
- Díaz-Noci, J. (2023) Fusión o plagio? La importancia de la originalidad y el derecho de transformación de la obra en la producción informativa mediante IA. Hipertext.net. (26), 69-76. https://doi.org/10.31009/hipertext.net.2023.i26.11
- Engel, C. (2023) Treu und Glauben: Frag GPT. MPI Collective Goods Discussion Paper. No. 2023/10. Available at: https://ssrn.com/abstract=4557719 [Accessed: 15th December 2023].
- Fill, H.-G. & Muff, F. (2023) Visualization in the Era of Artificial Intelligence: Experiments for Creating Structural Visualizations by Prompting Large Language Models. arXiv preprint, arXiv:2305.03380v2. https://doi.org/10.48550/arXiv.2305
- Frosio, G. (2024) Generative AI in Court. In: Koutras, N. & Selvadurai, N. (eds.). Recreating Creativity, Reinventing Inventiveness: AI and Intellectual Property Law. 1st ed. London, Routledge. pp. 1-36. https://doi.org/10.4324/9781003260127
- Gutiérrez López, K.M. (2023) Inteligencia artificial generativa: irrupción y desafíos. Revista Enfoques. 4(2), 57-82.
- Jiang, C. & Yang, X. (2023) Legal syllogism prompting: Teaching large language models for legal judgment prediction. In: Proceedings of the Nineteenth International Conference on Artificial Intelligence and Law (ICAIL '23). Association for Computing Machinery, New York, NY, USA, pp. 417-421. https://doi.org/10.1145/3594536.3595170
- Krasavchikov, O.A. (1958) Legal Facts in Soviet Civil Law. Moscow, Gosyurizdat Publ. (in Russian).
- Laptev, V.A., Chucha, S.Y. & Feyzrakhmanova, D.R. (2022) Digital transformation of management tools in modern corporations: current state and development paths. Law Enforcement Review. 6(1), 229-244. https://doi.org/10.52468/2542-1514.2022.6(1).229-244 (in Russian).
- Lee, E. (2024) Prompting Progress: Authorship in the Age of AI. Florida Law Review. (76). Available at SSRN: http://dx.doi.org/10.2139/ssrn.4609687
- Longo, E. (2023) La “giustizia digitale” tra nuove forme di efficienza e garanzia dei diritti costituzionali. La Nuova Giuridica - Florence Law Review. (2), 187-202.
- McCormack, J., Cruz Gambardella, C., Rajcic, N., Krol, S.J., Llano, M.T., & Yang, M. (2023) Is Writing Prompts Really Making Art? In: Johnson, C., Rodríguez-Fernández, N. & Rebelo, S. M. (eds.). Artificial Intelligence in Music, Sound, Art and Design. Cham, Springer Nature Switzerland. pp. 196-211.
- Moore, B. (1996) De l’acte et du fait juridique ou d’un critère de distinction incertain, Revue juridique Thémis. 30(2), 281-312.
- Oliveira, V., Nogueira, G. & Faleiros, T., et al. (2024) Combining prompt-based language models and weak supervision for labeling named entity recognition on legal documents. Artificial Intelligence and Law. https://doi.org/10.1007/s10506-023-09388-1
- Östling, A., Sargeant, H., Xie, H., Bull, L., Terenin, A., Jonsson, L., Magnusson, M. & Steffek, F. (2024) The Cambridge Law Corpus: A dataset for legal AI research. University of Cambridge Faculty of Law Research Paper. No. 11/2024. Available at SSRN: http://dx.doi.org/10.2139/ssrn.4763429
- Poduzova, E.B. (2023) Artificial intelligence and AI technologies in contract law: civilistic concept. Vasilevskaya, L.Y. (ed.). Moscow, Prospekt Publ. (in Russian).
- Rajcic, N., Llano, M. T., & McCormack, J. (2024) Towards a difractive analysis of prompt-based generative AI. In: Wilson, M.L., Toups Dugas, P. & Shklovski, I. (eds.). Proceedings of the 2024 CHI Conference on Human Factors in Computing Sytems Article 844 Association for Computing Machinery (ACM). https://doi.org/10.1145/3613904.3641971
- Romero-Carazas, R. (2023) Prompt lawyer: a challenge in the face of the integration of artificial intelligence and law. Gamification and Augmented Reality. (1), 7-7. https://doi.org/10.56294/gr20237
- Rouhette, G. (1988) La doctrine de l'acte juridique: sur quelques matériaux récents. Droits. (7), 29-35.
- Saripan, H., Mohd Shith P., Nurus Sakinatul Fikriah, Abu Hassan, R. & Abdullah, S.M. (2023) Generative artificial intelligence prompt-kit for enhanced legal learning and analysis. In: International Teaching Aid Competition. Universiti Teknologi MARA, Kedah, pp. 282-288.
- Scheufen, M. (2019) Künstliche Intelligenz und Haftungsrecht: die e-Person aus ökonomischer Sicht. Wirtschaftsdienst. 99(6), 411-414. https://doi.org/10.1007/s10273-019-2466-0
- Schneider, G. (2022) Legal Challenges of AI Supported Legal Services: Bridging Principles and Markets. The Italian Law Journal. 08(01), 244-262.
- Seufert, S. & Meier, C. (2023) Hybrid Intelligence: Collaboration with AI Assistance Systems in Knowledge-Intensive Areas. HMD Praxis der Wirtschaftsinformatik. 60(6), 1194-1209. https://doi.org/10.1365/s40702-023-01012-9
- Sivakumar, A., Gelman, B., Simmons, R., Yu, E. & Sharp, M. (2023) Standardized nomenclature for legal prompting in generative language models. University of California, Los Angeles. Preprint. https://doi.org/10.21203/rs.3.rs-3308564/v1
- Steinhoff, T. (2023) Der Computer schreibt (mit): Digitales Schreiben mit Word, WhatsApp, ChatGPT & Co. als Koaktivität von Mensch und Maschine. MIDU. 5(1), 1-16. https://doi.org/10.18716/OJS/MIDU/2023.1.4
- Stokel-Walker, Ch. & Van Noorden, R. (2023) The promise and peril of generative AI. Nature. 614(1), 214-216.
- Sullivan, H.R. & Schweikart, S.J. (2019) Are Current Tort Liability Doctrines Adequate for Addressing Injury Caused by AI? AMA Journal of Ethics. 21(2), E160-166. https://doi.org/10.1001/amajethics.2019.160
- Sun, J., Huang, S. & Wei, C. (2024) Chinese legal judgment prediction via knowledgeable prompt learning. Expert Systems with Applications. (238), 122-177.
- Tang, Y., Qiu, R. & Li, X. (2022) Prompt-based Effective Input Reformulation for Legal Case Retrieval. arXiv preprint arXiv:2309.02962
- Trautmann, D. (2023) Large Language Model Prompt Chaining for Long Legal Document Classification. In: SwissText'23: The 8th edition of the Swiss Text Analytics Conference - Generative AI & LLM, June 12-14, 2023, Neuchâtel, Switzerland.
- Van Dis, E.A.M., Bollen, J., Zuidema, W., van Rooij, R. & Bockting, C.L. (2023) ChatGPT: five priorities for research. Nature. (614), 224-226.
- Yu, F., Quartey, L. & Schilder, F. (2022) Legal prompting: Teaching a language model to think like a lawyer. arXiv preprint arXiv:2212.01326.
- Zheng, M., Pei, J. & Jurgens, D. (2023) Is “A Helpful Assistant” the Best Role for Large Language Models? A Systematic Evaluation of Social Roles in System Prompts. In: SwissText’23: The 8th edition of the Swiss Text Analytics Conference - Generative AI & LLM, June 12-14, 2023, Neuchâtel, Switzerland.
Arquivos suplementares
