Analysis of wealth inequality with a random money transfer model

Cover Page

Cite item

Full Text

Abstract

Increasing gap in wealth distribution is among the key issues that have been discussed worldwide in recent years. In this paper, we use the money transfer model to explain the formation of wealth distribution, by imposing two types of debt constraints, and the analytic function of wealth distribution is derived by adopting Boltzmann statistics. With a limit of individual debt, it is shown that the stationary distribution of wealth follows the exponential law, which is verified by many empirical studies. While the limit is imposed on the total amount of bank loan, the stationary distribution becomes an asymmetric Laplace one. Furthermore, an excellent agreement is found between these analytical probability density functions and numerical results by simulation at the steady state.

About the authors

Chen Siyan

Business School, Shantou University

Email: sychen1@stu.edu.cn
Associate Professor of Business School 243 Daxue Road, Shantou, Guangdong, P.R. China, 515063

Wang Yougui

School of Systems Science, Beijing Normal University

Email: ygwang@bnu.edu.cn
Professor of School of Systems Science 19, XinJieKouWai St., HaiDian District, Beijing, P.R. China, 100875

Yang Chengyu

Business School, Beijing Normal University

Email: cyang@bnu.edu.cn
Professor of Business School 19, XinJieKouWai St., HaiDian District, Beijing, P.R. China, 100875

Desiderio Saul

Business School, Shantou University

Email: saul@stu.edu.cn
Associate Professor of Business School 243 Daxue Road, Shantou, Guangdong, P.R. China, 515063

References

  1. Abergel F., Chakrabarti B.K., Chakraborti A., Mitra M. (2011) Econo-physics of Order-driven Markets Eds. Springer, Milan. doi: 10.1007/978-88-470-1766-5
  2. Abul-Magd A. Y. (2002). “Wealth distribution in an ancient Egyptian society”. Physical Review E 66, 057104. DOI https://doi.org/10.1103/PhysRevE.66.057104
  3. Bak P., N rrelykke S.F., Shubik M. (1999). “Dynamics of money”. Physical Review E. 60. P. 2528-2532
  4. Basu B., Chakrabarti B.K., Chakravarty S.R., Gangopadhyay K. (2010) Econophysics & Economics of Games, Social Choices and Qauntitative Techniques Eds. Springer, Milan. https://doi.org/10.1007/97888-470-1501-2
  5. Benhabib J., Bisin A., Zhu S. (2011). “The distribution of wealth and fiscal policy in economies with finitely lived agents”. Econometrica. 79(1). P. 123-157
  6. Benhabib J., Bisin A., Lu M. (2017). “Earnings inequality and other determinants of wealth inequality”. American Economic Review. 107(5). P. 593-597
  7. Braun D. (2001). “Assets and liabilities are the momentum of particles and antiparticles displayed in Feynman-graphs”. Physica A. 290. P. 491-500
  8. Castaneda A., Diaz-Gimenez J., Rios-Rull J.V. (2003). “Accounting for the U.S. earnings and wealth inequality”. Journal of Political Economy. 111(4). P. 818-857
  9. Chakrabarti B.K., Chakraborti A., Chatterjee A. (2006) Econophysics and Sociophysics: Trends and Perspectives Eds. Wiley-VCH, Berlin
  10. Chakraborti A., Chakrabarti B.K. (2000). “Statistical mechanics of money: how saving propensity affects its distribution”. The European Physical Journal B. 17. P. 167-170
  11. Chatterjee A., Chakrabarti B.K., Manna S.S. (2004). “Pareto law in a kinetic model of market with random saving propensity”. Physica A. 335. P. 155-163
  12. Chatterjee A., Yarlagadda S., Chakrabarti B.K. (2005) Econophysics of Wealth Distributions Eds. Springer, Milan, 2005
  13. Chatterjee A., Chakrabarti B.K. (2007) Econophysics of Markets and Business Networks Eds. Springer, Milan
  14. Chen S., Wang Y., Li K., Wu J. (2014). “Money Creation Process in Random Redistribution Model”, Physica A. 394. P. 217-225
  15. Coelho R., N’eda Z., Ramasco J.J., Santos M.A. (2005). “A family-network model for wealth distribution in societies”. Physica A. 353. P. 515-528
  16. Ding N., Xi N., Wang Y. (2003). The European Physical Journal B. 36. P. 149-153.
  17. Drăgulescu A., Yakovenko V.M. (2000). “Statistical mechanics of money”. The European Physical Journal B. 17. P. 723-729.
  18. Drăgulescu A., Yakovenko V.M. (2001). “ Exponential and power-law probability distributions of wealth and income in the united kingdom and the united states”. Physica A. 299(1). P. 213-221.
  19. Fischer R., Braun D. (2003). “Transfer potentials shape and equilibrate monetary systems”. Physica A. 321. P. 605-618.
  20. Global Wealth Report 2016. Credit Suisse AG Research Institute, 2017.
  21. Hegyi G., Neda Z., Santos M.A. (2007). “Wealth distribution and Pareto’s law in the Hungarian medieval society”. Physica A. 380. P. 271-277.
  22. Hayes B. (2002). “Follow the money”. American Scientisit. 90. P. 400-405.
  23. Ispolatov S., Krapivsky P.L., Redner S. (1998). “Wealth distribution in asset exchange models”. The European Physical Journal B. 2. P. 267-276.
  24. Klass O.S., Biham O., Levy M., Malcai O., Solomon S. (2007). “The Forbes 400, the Pareto powerlaw and efficient markets”. The European Physical Journal B. 55. P. 143-147.
  25. Levy M., Solomon S. (1996). “Power laws are logarithmic Boltzmannn laws”. International Journal of Modern Physics C. 7. P. 595-751.
  26. Levy M., Solomon S. (1997). “New evidence for the Power-law Distribution of wealth”. Physica A. 242. P. 90-94.
  27. Levy M. (2003). “Are rich people smarter”. Journal of Economic Theory. 110. P. 42-64.
  28. Levy M., Levy H. (2003). “Investment talent and the Pareto wealth distribution”. Review of Economics and Statistics. 85. P. 709-725.
  29. Pareto V. (1896). La courbe de la r’epartition de la richesse Reprinted in OEeuvres Compl’etes de Vilfredo Pareto, Tome 3: Ecrits sur la Courbe de la R epartition de la Richesse ed G Busoni (Geneva: Librairie Droz, 1965), English translation in Rivista Politica Econ. 87 (1997) 647.
  30. Sinha S. (2006). “Evidence for power-law tail of the wealth distribution in India”. Physica A. 359. P. 555-562.
  31. Yakovenko V. M. (2009) in Encyclopedia of Complexity and System Science eds. Meyers R.A., Springer, Berlin.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).