Evidence from the South African Energy Sector on the Impact of Gas Consumption and Technologies on the Environment
- 作者: Yobe C.L.1, Muchara B.1
-
隶属关系:
- University of South Africa, Graduate School of Business Leadership
- 期: 卷 32, 编号 2 (2024): INNOVATION AND INVESTMENT: OPPORTUNITIES AND PROSPECTS
- 页面: 287-302
- 栏目: INDUSTRIAL ORGANIZATION MARKETS
- URL: https://journals.rcsi.science/2313-2329/article/view/324283
- DOI: https://doi.org/10.22363/2313-2329-2024-32-2-287-302
- EDN: https://elibrary.ru/IXXILJ
- ID: 324283
如何引用文章
全文:
详细
Legacy emissions from fossil fuel consumption signify the lasting impact of past carbon dioxide (CO2) emissions on present-day emissions. Given that the current emission levels are also high; it has become urgent to deal with this crisis. This study aims to examine the effects of gas consumption, legacy CO2 emissions, energy decoupling, and population on carbon dioxide emissions in South Africa using the modified IPAT identity and the Markov Switching Dynamic Regression analysis. Integrating additional variables into the modified IPAT identity uncovered evidence from the South African energy sector on the impact of gas consumption on the environment. The Markov Switching Dynamic Regression Model (MSDRM) utilised annual data from the South African energy sector from 1966 to 2020, collected from diverse sources. Results indicate that the Gas model’s probability (i.e., 0.8475) would persist in high-emissions states over time. The MSDRM results showed that gas consumption suggests a statistically significant negative relationship between gas consumption (-0.0461) and CO2 emissions, meaning that despite the decrease in CO2 emissions from using gas, it does not imply instant reversals in the ambient CO2 as to reduce the overall CO2, likely contributed from other CO2-emitting fuels. The MSDRM results showed that legacy CO2 emissions positively impact (I) current CO2 emissions and that decoupling (T) leads to increased CO2 emissions-the latter relationship indicating likely energy rebounding. These findings highlight the need to prioritise interventions and strategies targeting the factors with higher probabilities of contributing to sustained high emissions, which may involve implementing policies to transition away from high-emission sources while exploring alternatives and adopting cleaner energy sources. The results emphasise the challenge of decoupling economic growth from high CO2 emissions and underscore the importance of sustained efforts to address and mitigate climate change.
作者简介
Collin Yobe
University of South Africa, Graduate School of Business Leadership
编辑信件的主要联系方式.
Email: collinyobe@gmail.com
ORCID iD: 0000-0001-5270-2192
Postdoctoral Research Fellow
Cnr Janadel and, Alexandra Ave, Midrand, 1686, South AfricaBinganidzo Muchara
University of South Africa, Graduate School of Business Leadership
Email: Muchab@unisa.ac.za
ORCID iD: 0000-0003-0578-576X
Doctor, Senior Lecturer
Cnr Janadel and, Alexandra Ave, Midrand, 1686, South Africa参考
- Abas, N., Kalair, A., & Khan, N. (2015). Review of fossil fuels and future energy technologies. Futures, 69, 31-49. https://doi.org/10.1016/j.futures.2015.03.003
- Andrew, R., & Peters, G. (2021). The Global Carbon Project’s Fossil CO2 Emissions Dataset. Zenodo: Geneva, Switzerland.
- Benli, B., Gezer, M., & Karakas, E. (2020). Smart City transformation for mid-sized cities: Case of Canakkale, Turkey. Handbook of smart cities, 1-20.
- Berry, E.X. (2019). Human CO2 emissions have little effect on atmospheric CO2. International Journal of Atmospheric and Oceanic Sciences, 3(1), 13-26. https://doi.org/10.1007/978-3030-15145-4_23-1. https:10.11648/j.ijaos.20190301.13
- Caineng, Z.O. U., Xiong, B., Huaqing, X.U. E., Zheng, D., Zhixin, G.E., Ying, W.A. N.G., & Songtao, W.U. (2021). The role of new energy in carbon neutral. Petroleum exploration and development, 48(2), 480-491. https://doi.org/10.1016/S1876-3804 (21)60039-3
- Chertow, M.R. (2000). The IPAT equation and its variants. Journal of industrial ecology, 4(4), 13-29. https://doi.org/10.1162/10881980052541927
- Chovancová, J., & Tej, J. (2020). Decoupling economic growth from greenhouse gas emissions: The case of the energy sector in V4 countries. Equilibrium. Quarterly Journal of Economics and Economic Policy, 15(2), 235-251
- Covert, T., Greenstone, M., & Knittel, C.R. (2016). Will we ever stop using fossil fuels? Journal of Economic Perspectives, 30(1), 117-138
- Du, K., Li, P., & Yan, Z. (2019). Do green technology innovations contribute to carbon dioxide emission reduction? Empirical evidence from patent data. Technological Forecasting and Social Change, 146, 297-303. https://doi.org/10.1016/j.techfore.2019.06.010
- Gielen, D., Boshell, F., Saygin, D., Bazilian, M.D., Wagner, N., & Gorini, R. (2019). The role of renewable energy in the global energy transformation. Energy strategy reviews, 24, 38-50. https://doi.org/10.1016/j.esr.2019.01.006
- Granshaw, F.D. (2020). 5: The Carbon Cycle. Climate Toolkit 2.0.
- Gujarati, D.N. (2004). Basic Econometrics, The McGraw. Hill Companies.
- Hamilton, J.D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica: Journal of the econometric society, 357-384. https://doi.org/10.2307/1912559
- Hubacek, K., Chen, X., Feng, K., Wiedmann, T., & Shan, Y. (2021). Evidence of decoupling consumption-based CO2 emissions from economic growth. Advances in Applied Energy, 4, 100074. https://doi.org/10.1016/j.adapen.2021.100074
- Islam, M.M., Hasanuzzaman, M., Pandey, A.K., & Rahim, N.A. (2020). Modern energy conversion technologies. In Energy for sustainable development (pp. 19-39). Academic Press. https://doi.org/10.1016/B978-0-12-814645-3.00002-X
- Jacal, S., Straubinger, F.B., Benjamin, E.O., & Buchenrieder, G. (2022). Economic costs and environmental impacts of fossil fuel dependency in sub-Saharan Africa: A Nigerian dilemma. Energy for Sustainable Development, 70, 45-53. https://doi.org/10.1016/j. esd.2022.07.007
- Li, R., & Li, S. (2021). Carbon emission post-coronavirus: continual decline or rebound? Structural Change and Economic Dynamics, 57, 57-67. https://doi.org/10.1016/j. strueco.2021.01.008
- Lin, B., & Zhu, J. (2019). The role of renewable energy technological innovation on climate change: Empirical evidence from China. Science of the Total Environment, 659, 1505-1512. https://doi.org/10.1016/j.scitotenv.2018.12.449
- Martins, T., Barreto, A.C., Souza, F.M., & Souza, A.M. (2021). Fossil fuels consumption and carbon dioxide emissions in G7 countries: Empirical evidence from ARDL bounds testing approach. Environmental Pollution, 291, 118093. https://doi.org/10.1016/j. envpol.2021.118093
- Neves, S.A., & Marques, A.C. (2021). The substitution of fossil fuels in the US transportation energy mix: Are emissions decoupling from economic growth?. Research in Transportation Economics, 90, 101036. https://doi.org/10.1016/j.retrec.2021.101036
- Pham, N.M., Huynh, T.L. D., & Nasir, M.A. (2020). Environmental consequences of population, affluence and technological progress for European countries: A Malthusian view. Journal of environmental management, 260, 110143. https://doi.org/10.1016/j.jenvman.2020.110143
- Project, G.C. 2021. Supplemental data of global carbon budget 2021 (version 1.0). Global Carbon Project
- Raihan, A., Muhtasim, D.A., Farhana, S., Pavel, M.I., Faruk, O., Rahman, M., & Mahmood, A. (2022). Nexus between carbon emissions, economic growth, renewable energy use, urbanization, industrialization, technological innovation, and forest area towards achieving environmental sustainability in Bangladesh. Energy and Climate Change, 3, 100080. https://doi.org/10.1016/j.egycc.2022.100080
- Rehman, A., Rauf, A., Ahmad, M., Chandio, A.A., & Deyuan, Z. (2019). The effect of carbon dioxide emission and the consumption of electrical energy, fossil fuel energy, and renewable energy, on economic performance: evidence from Pakistan. Environmental Science and Pollution Research, 26, 21760-21773. https://doi.org/10.1007/s11356-01905550-y
- Ripple, W.J., Wolf, C., Lenton, T.M., Gregg, J.W., Natali, S.M., Duffy, P.B., & Schellnhuber, H.J. (2023). Many risky feedback loops amplify the need for climate action. One Earth, 6(2), 86-91
- Skånberg, K., & Svenfelt, Å. (2022). Expanding the IPAT identity to quantify backcasting sustainability scenarios. Futures & Foresight Science, 4(2), e116. https://doi.org/10.1002/ ffo2.116
- Sorrell, S., Gatersleben, B., & Druckman, A. (2020). The limits of energy sufficiency: A review of the evidence for rebound effects and negative spillovers from behavioural change. Energy Research & Social Science, 64, 101439. https://doi.org/10.1016/j.erss.2020.101439
- Stančin, H., Mikulčić, H., Wang, X., & Duić, N. (2020). A review on alternative fuels in future energy system. Renewable and sustainable energy reviews, 128, 109927. https://doi.org/10.1016/j. rser.2020.109927
- Wang, Q., & Su, M. (2020). Drivers of decoupling economic growth from carbon emission- an empirical analysis of 192 countries using decoupling model and decomposition method. Environmental Impact Assessment Review, 81, 106356. https://doi.org/10.1016/j. eiar.2019.106356
- Wang, Q., & Zhang, F. (2020). Does increasing investment in research and development promote economic growth decoupling from carbon emission growth? An empirical analysis of BRICS countries. Journal of Cleaner Production, 252, 119853. https://doi.org/10.1016/j. jclepro.2019.119853
- Wang, Q., & Zhang, F. (2021). The effects of trade openness on decoupling carbon emissions from economic growth-evidence from 182 countries. Journal of cleaner production, 279, 123838. https://doi.org/10.1016/j.jclepro.2020.123838
- Wooldridge, J.M. (2010). Econometric analysis of cross section and panel data. MIT press.
- Wooldridge, J.M. (2015). Control function methods in applied econometrics. Journal of Human Resources, 50(2), 420-445. https://doi.org/10.3368/jhr.50.2.420
- Zou, C., Zhao, Q., Zhang, G., & Xiong, B. (2016). Energy revolution: From a fossil energy era to a new energy era. Natural Gas Industry B, 3(1), 1-11. https://doi.org/10.1016/j. ngib.2016.02.001
补充文件
