Цифровая трансформация: открытие нового измерения в эффективности производства

Обложка

Цитировать

Полный текст

Аннотация

Производственный сектор находится на пороге цифровой революции, которая обещает коренным образом изменить его операционный ландшафт. Исследование посвящено цифровой интеграции в сфере производства и освещает процесс цифровой трансформации и его последствия. Дискуссия начинается с анализа текущего состояния цифровой трансформации в производственном секторе, с особым акцентом на технологиях Интернета вещей (IoT), искусственного интеллекта (AI), цифрового двойника (DT) и робототехники, которые находятся на переднем крае повышения эффективности и стимулирования инноваций. Значительное внимание уделено опыту Китая в цифровой трансформации производства и вызовам, с которыми могут столкнуться производители, включая культурную инертность и недостаток навыков. Описаны пути преодоления этих препятствий. Рассматриваются варианты выхода на перспективные траектории и инновации в цифровизации производства, прогнозируются последствия появления таких технологий, как передовая робототехника, связь 5G, устойчивые производственные практики и тенденции кастомизации. Акцентируется стратегическая важность цифровой трансформации производства и конкурентные преимущества, которые она предоставляет. В исследовании очерчены стратегические рамки проблематики цифровой трансформации в производственном секторе, оно представляет интерес как для работников науки и образования, так и для практиков, задействованных в сфере цифровизации.

Об авторах

Цзинь Баймин

Российский университет дружбы народов

Email: 1042238023@pfur.ru
аспирант кафедры национальной экономики, экономический факультет Российская Федерация, 117198, Москва, ул. Миклухо-Маклая, д. 6

Роберт Оганесович Воскеричян

Российский университет дружбы народов

Автор, ответственный за переписку.
Email: voskerichyan-ro@rudn.ru
доцент кафедры национальной экономики, экономический факультет Российская Федерация, 117198, Москва, ул. Миклухо-Маклая, д. 6

Список литературы

  1. Ahmed, E., Yaqoob, I., Hashem, I.A. T., Khan, I., Ahmed, A.I. A., Imran, M., & Vasilakos, A.V. (2017). The role of big data analytics in Internet of Things. Computer Networks, 129, 459-471. https://doi.org/10.1016/j.comnet.2017.06.013
  2. Attaran, S., Attaran, M., & Celik, B.G. (2024). Digital Twins and Industrial Internet of Things: Uncovering operational intelligence in industry 4.0. Decision Analytics Journal, 10, 100398. https://doi.org/10.1016/j.dajour.2024.100398
  3. Banga, K. (2022). Digital technologies and product upgrading in global value chains: Empirical evidence from Indian manufacturing firms. The European Journal of Development Research, 1-26. https://doi.org/10.1057/s41287-020-00357-x
  4. Baranauskas, G. (2020). Digitalization impact on transformations of mass customization concept: conceptual modelling of online customization frameworks. Marketing & Management of Innovations, (3). https://doi.org/10.21272/mmi.2020.3-09
  5. Brunetti, F., Matt, D.T., Bonfanti, A., De Longhi, A., Pedrini, G., & Orzes, G. (2020). Digital transformation challenges: strategies emerging from a multi-stakeholder approach. The TQM Journal, 32(4), 697-724. https://doi.org/10.1108/TQM-12-2019-0309
  6. Budagov, A.S., & Sukhova, N.A. (2020). Problems of effective business digital transformation management. European Proceedings of Social and Behavioural Sciences. https://doi.org/10.15405/epsbs.2020.10.03.48
  7. De Oliveira, R.I., Sousa, S.O., & De Campos, F.C. (2019). Lean manufacturing implementation: bibliometric analysis 2007-2018. The International Journal of Advanced Manufacturing Technology, 101, 979-988. https://doi.org/10.1007/s00170-018-2965-y
  8. Erol, T., Mendi, A.F., & Doğan, D. (2020, October). Digital transformation revolution with digital twin technology. In 2020 4th international symposium on multidisciplinary studies and innovative technologies (ISMSIT) (pp. 1-7). IEEE. https://doi.org/10.1109/ISMSIT50672.2020.9254288
  9. Georgakopoulos, D., Jayaraman, P.P., Fazia, M., Villari, M., & Ranjan, R. (2016). Internet of Things and edge cloud computing roadmap for manufacturing. IEEE Cloud Computing, 3(4), 66-73. https://doi.org/10.1109/MCC.2016.91
  10. Goel, R., & Gupta, P. (2020). Robotics and industry 4.0. A Roadmap to Industry 4.0: Smart Production, Sharp Business and Sustainable Development, 157-169. https://doi.org/10.1007/978-3030-14544-6_9
  11. Grieves, M. (2014). Digital twin: manufacturing excellence through virtual factory replication. White paper, 1, 1-7
  12. Gul, R., Leong, K., Mubashar, A., Al-Faryan, M.A. S., & Sung, A. (2023). The Empirical Nexus between Data-Driven Decision-Making and Productivity: Evidence from Pakistan’s Banking Sector. Cogent Business & Management, 10(1), 2178290. https://doi.org/10.1080/23311975.2023.2178290
  13. Helo, P., & Hao, Y. (2022). Artificial intelligence in operations management and supply chain management: An exploratory case study. Production Planning & Control, 33(16), 1573-1590. https://doi.org/10.1080/09537287.2021.1882690
  14. Kagermann, H. (2013) Securing Germany’s future as a production location. Implementation recommendations for the future project Industry 4.0. Berlin: Forschungsunion. 116 p
  15. Kamble, S., Gunasekaran, A., & Dhone, N.C. (2020). Industry 4.0 and lean manufacturing practices for sustainable organisational performance in Indian manufacturing companies. International journal of production research, 58(5), 1319-1337. https://doi.org/10.1080/00207543.2019 .1630772
  16. Lasi, H., Fettke, P., Kemper, H.G., Feld, T., & Hoffmann, M. (2014). Industry 4.0. Business & information systems engineering, 6, 239-242. https://doi.org/10.1007/s12599-0140334-4
  17. Li, R., & Qiao, H. (2019). A survey of methods and strategies for high-precision robotic grasping and assembly tasks-Some new trends. IEEE/ASME Transactions on Mechatronics, 24(6), 2718-2732. https://doi.org/10.1109/TMECH.2019.2945135
  18. Lom, M., Pribyl, O., & Svitek, M. (2016, May). Industry 4.0 as a part of smart cities. In 2016 Smart Cities Symposium Prague (SCSP) (pp. 1-6). IEEE. https://doi.org/10.1109/SCSP.2016.7501015
  19. Lu, Y. (2017). Industry 4.0: A survey on technologies, applications and open research issues. Journal of industrial information integration, 6, 1-10. https://doi.org/10.1016/j.jii.2017.04.005
  20. Saeed, S., Altamimi, S.A., Alkayyal, N.A., Alshehri, E., & Alabbad, D.A. (2023). Digital transformation and cybersecurity challenges for businesses resilience: Issues and recommendations. Sensors, 23(15), 6666. https://doi.org/10.3390/s23156666
  21. Shi, Y. (2022). Digital economy: Development and future. Bulletin of Chinese Academy of Sciences (Chinese Version), 37(1), 78-87. https://doi.org/10.16418/j.issn.1000-3045.20211217002
  22. Singh, M., Fuenmayor, E., Hinchy, E.P., Qiao, Y., Murray, N., & Devine, D. (2021). Digital twin: Origin to future. Applied System Innovation, 4(2), 36. https://doi.org/10.3390/asi4020036
  23. Sundar, R., Balaji, A.N., & Kumar, R.S. (2014). A review on lean manufacturing implementation techniques. Procedia Engineering, 97, 1875-1885. https://doi.org/10.1016/j.proeng.2014.12.341
  24. Tran, M.Q., Doan, H.P., Vu, V.Q., & Vu, L.T. (2023). Machine learning and IoT-based approach for tool condition monitoring: A review and future prospects. Measurement, 207, 112351. https://doi.org/10.1016/j.measurement.2022.112351
  25. Wang, W., Guo, Q., Yang, Z., Jiang, Y., & Xu, J. (2023). A state-of-the-art review on robotic milling of complex parts with high efficiency and precision. Robotics and Computer-Integrated Manufacturing, 79, 102436. https://doi.org/10.1016/j.rcim.2022.102436
  26. Wang, Y., & Su, X. (2021). Driving factors of digital transformation for manufacturing enterprises: A multi-case study from China. International Journal of Technology Management, 87 (2-4), 229-253. https://doi.org/10.1504/IJTM.2021.120932
  27. Wolf, M., Semm, A., & Erfurth, C. (2018). Digital transformation in companies-challenges and success factors. In Innovations for Community Services: 18th International Conference, I4CS 2018, Žilina, Slovakia, June 18-20, 2018, Proceedings (pp. 178-193). Springer International Publishing. https://doi.org/10.1007/978-3-319-93408-2_13
  28. Yanyu W., Xin, S. (2021). Driving factors of digital transformation for manufacturing enterprises: a multi-case study from China. International journal of technology management. 87(2/4), 229-253.
  29. Zhu, Z., Tang, X., Chen, C., Peng, F., Yan, R., Zhou, L., Li, Z., & Wu, J. (2022). High precision and efficiency robotic milling of complex parts: Challenges, approaches and trends. Chinese Journal of Aeronautics, 35(2), 22-46. https://doi.org/10.1016/j.cja.2020.12.030

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».