Group averaging and the Gini deviation

Capa

Citar

Texto integral

Resumo

It is known that partitioning a society into groups with subsequent averaging in each group decreases the Gini coefficient. The resulting Lorenz function is piecewise linear. This study deals with a natural question: by how much the Gini coefficient could decrease when passing to a piecewise linear Lorenz function? Obtained results are quite illustrative (since they are expressed in terms of the geometric parameters of the polygon Lorenz curve, such as the lengths of its segments and the angles between successive segments) upper bound estimates for the maximum possible change in the Gini coefficient with a restriction on the group shares, or on the difference between the averaged values of the attribute for consecutive groups. It is shown that there exist Lorenz curves with the Gini coefficient arbitrarily close to one, and at the same time with the Gini coefficient of the averaged society arbitrarily close to zero.

Sobre autores

Oleg Pavlov

Peoples’ Friendship University of Russia (RUDN University)

Autor responsável pela correspondência
Email: pavlov-oi@rudn.ru

PhD, Associate Professor of Economic and Mathematic Modelling Department, Economic Faculty

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

Olga Pavlova

All-Russian Correspondence Multidisciplinary School

Email: lolgau@yandex.ru

PhD, Associate Professor at the Department of Higher Mathematics

B-234 Vorob'evy Gory, Moscow, 119234, Russian Federation

Bibliografia

  1. Arnold, B.C. (2007). The Lorenz curve: Evergreen after 100 years. In S. Betti, A. Lemmi (Eds.), Advances in Income Inequality Concentration Measures (pp. 12-24). New York: Routledge.
  2. Astashenko, A.N., & Malykhin, V.I. (2012). Income inequality measures. LAP Lambert Academic Publishing.
  3. Boltyanskij, V.G., Sidorov, Yu.V., & Shabunin, M.I. (1974). Lectures and problems on elementary mathematics. Moscow: Nauka Publ. (In Russ.)
  4. Ceriani, L., & Verme, P. (2012). The origins of the Gini index: Extracts from Variabilità e Mutabilità (1912) by Corrado Gini. J. Econ. Inequal, 10, 412-443.
  5. Farris, F.A. (2010). The Gini index and measures of inequality. American Mathematical Monthly, 117(10), 851-864.
  6. Fellman, J. (2012). Estimation of Gini coefficients using Lorenz curves. Journal of Statistical and Econometric Methods, 1(2), 31-38.
  7. Gastwirth, J. (1972). The estimation of the Lorenz curve and Gini index. Rev. Econom. Statist, 54, 306-316.
  8. Gini, C. (1912). Variabilità e mutuabilità: Contributo allo studio delle distribuzioni e delle relazioni statistiche. Bologna: C. Cuppini.
  9. Golden, J. (2008). A simple geometric approach to approximating the Gini coefficient. The Journal of Economic Education, 39(1), 68-77
  10. Hoover, E. (1936). The measurement of industrial localization. The Review of Economics and Statistics, 18, 162-171.
  11. Kakwani, N. (1980). Income inequality and poverty: Methods of estimation and poverty applications. Oxford University Press.
  12. Kämpke, T., & Radermacher, F.J. (2015). Income modeling and balancing. A rigorous treatment of distribution patterns. Lecture Notes in Economics and Mathematical Systems, 679, 44-53.
  13. Pavlov, O.I., & Pavlova, O.Yu. (2016). The Lorenz curve and a mathematical definition of the middle class. Management of Economic Systems, (12). Retrieved March 15, 2021, from http://uecs.ru/uecs-94-942016/item/4239-2016-12-24-07-45-16
  14. Pavlov, O.I., & Pavlova, O.Yu. (2018). Differential deviation and the Gini coefficient. Russian Economics Online-Journal, (4). Retrieved March 15, 2021, from http://www.e-rej.ru/publications/176/%D0%9F/
  15. Zorich, V.A. (2019). Mathematical analysis (part 1). Moscow: MCCME Publ. (In Russ.)

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».