Biochemical assessment of the effect of the antibiotic erythromycin on the river snail (Viviparus viviparus L.)


Cite item

Full Text

Abstract

The activity of the complex of acid deoxyribonucleases (DNases) and ribonucleases (RNases) of the hepatopancreas of the river snail ( Viviparus viviparus L.) was studied under normal conditions and under acute exposure to erythromycin. An increase in the activity of acidic DNases has been established, while the nature of the change in RNase activity is less significant. Based on the experimental data obtained, a significant effect of erythromycin on the river snail ( Viviparus viviparus L.), manifested at the biochemical level, was established. The possibility of using changes in the activity of hepatopancreas nucleases of the common river snail as markers of pollution of aquatic ecosystems has been demonstrated.

About the authors

Ekaterina A. Tishina

Federal State University of Education

Email: 89266182591@mail.ru
ORCID iD: 0000-0001-8329-7855

Head of the Educational Laboratory of Applied Chemistry

24 Vera Voloshina St, Mytishchi, Moscow Region, 141014, Russian Federation

Tatiana S. Droganova

Federal State University of Education

Author for correspondence.
Email: tatyanadroganova@gmail.com
ORCID iD: 0000-0002-8917-7392
SPIN-code: 2250-9950

Senior Lecturer at the Department of Theoretical and Applied Chemistry

24 Vera Voloshina St, Mytishchi, Moscow Region, 141014, Russian Federation

Lyudmila V. Polikarpova

Federal State University of Education

Email: judmilapolikarpova@yandex.ru
ORCID iD: 0000-0002-5459-3054
SPIN-code: 9605-2840

Researcher at the Educational and Scientific Laboratory of Ecological Biochemistry

24 Vera Voloshina St, Mytishchi, Moscow Region, 141014, Russian Federation

Andrew L. Petrov

Medical Immunobiological preparations “Microgen”

Email: unodeldiablo@mail.ru
ORCID iD: 0009-0002-8219-8876

Laboratory Assistant for the production of bacterial preparations

10 2nd Volkonsky lane, Moscow, 127473. Russian Federation

References

  1. Cromwell GL. Why and how antibiotics are used in swine production. Animal Biotechnology. 2002;13(1):7–27. http://doi.org/10.1081/ABIO-120005767
  2. Magouras I, Carmo LP, Stärk KDC, Schüpbach-Regula G. Antimicrobial usage and-resistance in livestock: where should we focus? Frontiers in Veterinary Science. 2017;4:148. http://doi.org/10.3389/fvets.2017.00148
  3. Ibrahim M, Ahmad F, Yaqub B, Ramzan A, Imran A., Afzaal M, Mirza SA, Mazhar I, Younus M, Akram Q, Ali Taseer MS, Ahmad A, Ahmed S. Current trends of antimicrobials used in food animals and aquaculture. Antibiotics and Antimicrobial Resistance Genes in the Environment. 2020;1:39–69. http://doi.org/10.1016/B978-0-12-818882-8.00004-8
  4. Artem’eva OA, Pereselkova DA, Vinogradova IV, Kotkovskaya EN, Gladyr’ EA, Sivkin NV, Zinovieva NA. Screening of dairy cows’ herd for presence in milk of hemolytic microorganisms in relation to somatic cell content. Agricultural Biology. 2015;50(6):810–816. (In Russ.) http://doi.org/10.15389/agrobiology.2015.6.810rus EDN: VHRESR
  5. Lartseva LV, Istelyueva A.A, Menkova AV. Monitoring of enterobacteria antibiotic resistance isolated in internal waterways of Astrakhan city. Izvestia of Samara Scientific Center of the Russian Academy of Sciences. 2011;13(1):1350–1353. (In Russ.) EDN: PFAJQT
  6. Timofeeva SS, Gudilova OS. Antibiotics in the environment: status and problems. XXI century. Technosphere safety. 2021;6(3):251–265. (In Russ.) http://doi.org/10.21285/2500-1582-2021-3-251-265 EDN: DIORQU
  7. Svistunova AA, Tarasov VV. (eds.). Pharmacology: textbook. 3rd ed. Moscow: Laboratory of Knowledge Publ.; 2020. 768 p. (In Russ.).
  8. Obukhova OV, Larceva LV, Lisitskaya IA. Sanitary and microbiological assessment of the Volga Delta hydroecosystem under anthropogenic pollution. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2009(1):23–25. (In Russ.) EDN: KGEDMJ
  9. Yan Z, Huang X, Xie Y, Song M, Zhu K, Ding S. Macrolides induce severe cardiotoxicity and developmental toxicity in zebrafish embryos. Science of the Total Environment. 2019;649:1414–1421. http://doi.org/10.1016/j.scitotenv.2018.07.432
  10. Tishina EA, Droganova TS, Polikarpova LV. Effect of organophosphorus compounds on changes in the qualitative composition of freshwater mollusk proteins. In: Transformation of ecosystems under the influence of natural and anthropogenic factors. Proceedings of the International Scientific Conference. Kirov, April 16–18, 2019. Kirov: VyatGU; 2019. p. 162–165. (In Russ.) EDN: ZSLOTJ
  11. Droganova TS, Konichev AS, Petrenko DB, Polikarpova LV, Tsvetkov IL. Effect of sodium fluoride and fluoroacetic acid on the activity of acid DNase, acid phosphatase and soluble protein spectrum hepatopancreas river snail. Vestnik Moscow State Region. University. Seriya: Natural Sciences. 2017;(4):36–45. (In Russ.) http://doi.org/10.18384/2310-7189-2017-4-36-45 EDN: YNEGIQ
  12. Droganova TS, Polikarpova LV, Konichev AS. River snail liver protein spectrum in normal conditions and when intoxicated with lead (II) ions. Theoretical and Applied Ecology. 2019(3):109–113. (In Russ.) http://doi.org/10.25750/1995-4301-2019-3-109-113 EDN: MPZMYS
  13. Droganova TS, Polikarpova LV, Tishina EA, Anka M, Petrenko DB, Vasiliev NV. Effect of Zn2+ ions on acidic nuclease activity of freshwater molluscs. Izvestiia Akademii nauk. Seriia biologicheskaia. 2022(2):219–224. (In Russ.) http://doi.org/10.31857/S1026347022020056 EDN: LWJJIR
  14. Uvaeva EI, Shimkovich ED. Bioindication value of the population characteristics of the river snail (Mollusca, Gastropoda, Viviparidae) in water bodies of Central Polesie. Scientific notes of Kazan University. Natural Sciences Series. 2017;159(3):521–530. (In Russ.) EDN: ZSWNTH
  15. Prozherina JP. Pharmaceutical waste as a new environmental issue. Remedium. 2017;(11):14–19. (In Russ.) http://doi.org/10.21518/1561-5936-2017-11-14-19 EDN: ZWHRQH
  16. Lοwry OH, Rοsenbrought NJ, Farr AL, Rangal RL. Protein measurement with the Fοlin Phenol Reagent. J. Biol. Chem. 1951;193(2):265–275. http://doi.org/10.1016/S0021-9258(19)52451-6
  17. Anfinsen CB, Redfield RR, Choate WI, Page J, Carrol WR. Studies of cross structure, cross-linkage and terminal sequences in ribonuclease. Journal of Biological Chemistry. 1954;207:201–210. http://doi.org/10.1016/S0021-9258(18)71260-X
  18. Tsvetkov IL, Polikarpova LV, Konichev AS. A new method for quantitative determination of deoxyribonuclease activity using fluorophore labeled oligonucleotides as a substrate. Vestnik Moscow State Region. University. Seriya: Natural Sciences. 2012(3):46–51. (In Russ.) EDN: PJSLDX
  19. Menzorova NI, Rasskazov VA. Application of different test systems and biochemical indicators for environmental monitoring of the Troitsa Bay, Sea of Japan. Biologiya Morya. 2007;33(2):144–149. (In Russ.) EDN: IJXGKN
  20. Kovačić I, Fafanđel M, Perić L, Batel I. Effect of environmental pollutant mixtures on acid DNase activity in mussel Mytilus galloprovincialis: ex situ and in situ study. Bulletin of Environmental Contamination and Toxicology. 2017;99:433–437. http://doi.org/10.1007/s00128-017-2162-y

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).