Technological discourse in the Russian media: Main strategies for representing artificial intelligence

Cover Page

Cite item

Full Text

Abstract

Public perception of artificial intelligence may not coincide with its actual capabilities, but it plays the key role in how algorithms are developed, implemented, used and regulated. Mass media are not bystanders to this perception but shape public opinion: they influence attitudes towards technologies by setting the agenda and framing news. Given the fact that the issues of artificial intelligence have become increasingly requested in search engines and discussed on news resources in 2023-2024, we need to focus on the dominants of technological discourse and control over the transformation of society under the influence of new technological forms/orders. The sociological study conducted by the authors aimed at identifying representations and strategies for constructing the image of artificial intelligence in the Russian media under the active implementation and routinization of algorithmic technologies. The study was based on the discourse analysis as developed by sociology of knowledge - to understand how social actors form and use discursive strategies to realize their own interests. The article presents the results of the analysis, showing how the media represent artificial intelligence, which actors participate in the discussion and what meta-frames for the technology the media use. Thus, the authors mention that the news discourse at the time of the study was not sensitive to the potential risks of algorithms: possible negative consequences were considered less often than advantages, and the list of threats was usually incomplete and rather hyperbolic. The authors focus on the tendency to perceive artificial intelligence systems as superior to human capabilities, which can lead to the anthropomorphization of technical progress, and, therefore, to new ethical and social challenges.

About the authors

Zh. V. Puzanova

RUDN University

Author for correspondence.
Email: puzanova-zhv@rudn.ru
Miklukho-Maklaya St., 6, Moscow, Russia, 117198

A. G. Tertyshnikova

RUDN University

Email: ertyshnikova-ag@rudn.ru
кандидат социологических наук, старший преподаватель кафедры социологии Российского университета дружбы народов Miklukho-Maklaya St., 6, Moscow, Russia, 117198

U. O. Pavlova

RUDN University

Email: 1132236786@rudn.ru
магистрант кафедры социологии Российского университета дружбы народов Miklukho-Maklaya St., 6, Moscow, Russia, 117198

References

  1. Abrosimov V.K. Iskusstvenny intellekt i problemy razvitiya vooruzheniya i voennoj tekhniki [Artificial intelligence and development of weapons and military equipment]. Vooruzhenie i Ekonomika. 2021; 2. (In Russ.).
  2. Gorodnova N.V. Primenenie iskusstvennogo intellekta v biznes-sfere: sovremennoe sostoyanie i perspektivy [Application of artificial intelligence in business: Current status and prospects]. Voprosy Innovatsionnoj Ekonomiki. 2021; 11 (4). (In Russ.).
  3. Gorokhova S.S. Iskusstvenny intellekt v kontekste obespecheniya natsionalnoj bezopasnosti [Artificial intelligence in the context of national security]. Natsionalnaya Nezopasnost/Nota Bene. 2020; 3. (In Russ.).
  4. Dallakyan K.A. Tekhnosotsialnoe neravenstvo v tsifrovuyu epokhu [Technological-social inequality in the digital age]. Vestnik Moskovskogo Universiteta. Seriya 18: Sotsiologiya i Politologiya. 2020; 26 (1). (In Russ.).
  5. Dobrinskaya D.E., Martynenko T.S. Vozmozhno li tsifrovoe ravenstvo? [Is digital equality possible?]. Sociologicheskie Issledovaniya. 2020; 10. (In Russ.).
  6. Dobrinskaya D.E., Martynenko T.S. Perspektivy rossiyskogo informatsionnogo obshchestva: urovni tsifrovogo razryva [Perspectives of the Russian information society: Digital divide levels]. RUDN Journal of Sociology. 2019; 19 (1). (In Russ.).
  7. Kamolov S.G. i dr. Dominanty natsionalnyh strategij razvitiya iskusstvennogo intellekta v Rossii, Germanii i SShA [Dominants of national strategies for the development of artificial intelligence in Russia, Germany, and the USA]. Voprosy Gosudarstvennogo i Munitsipalnogo Upravleniya. 2022; 2. (In Russ.).
  8. Castells M. Galaktika Internet [The Internet Galaxy]. Moscow; 2003. (In Russ.).
  9. Krasikova T.R. Problema konstruirovaniya sotsialnoj realnosti v teorii massovoj kommunikatsii [The issue of constructing social reality in the theory of mass communication]. Sovremenny Diskurs-Analiz. 2013; 1. (In Russ.).
  10. Lakoff G., Johnson M. Metafory, kotorymi my zhivem [Metaphors We Live By]. Moscow; 2004. (In Russ.).
  11. Lyubimov A.P., Ponomareva D.V., Barabashev A.G. O natsionalnoj strategii razvitiya iskusstvennogo intellekta [On the national strategy for the development of artificialiIntelligence]. Predstavitelnaya Vlast — XXI Vek: Zakonodatelstvo, Kommentarii, Problemy. 2019; 5–6. (In Russ.).
  12. Malyshkin A.V. Integrirovanie iskusstvennogo intellekta v obshhestvennuyu zhizn: nekotorye eticheskie i pravovye problem [Integration of artificial intelligence into public life: Some ethical and legal issues]. Vestnik Sankt-Peterburgskogo Universiteta. Pravo. 2019; 10 (3). (In Russ.).
  13. Martynenko T.S., Dobrinskaya D.E. Sotsialnoe neravenstvo v epokhu iskusstvennogo intellekta: ot tsifrovogo k algoritmicheskomu razryvu [Social inequality in the era of artificial intelligence: From digital to algorithmic gap]. Monitoring Obshchestvennogo Mneniya: Ekonomicheskie i Sotsialnye Peremeny. 2021; 1. (In Russ.).
  14. Fomina A.N. Problemy i perspektivy razvitiya rynka iskusstvennogo intellekta v Rossii [Challenges and prospects for the development of the artificial intelligence market in Russia]. Voprosy Innovatsionnoj Ekonomiki. 2022; 12 (2). (In Russ.).
  15. Brayne S., Christin A. Technologies of crime prediction: The reception of algorithms in policing and criminal courts. Social Problems. 2021; 68 (3).
  16. Bunz M., Braghieri M. The AI doctor will see you now: Assessing the framing of AI in news coverage. AI & Society. 2022; 37 (1).
  17. Cave S., Dihal K. Hopes and fears for intelligent machines in fiction and reality. Nature Machine Intelligence. 2019; 1 (2).
  18. Crépel M., Cardon D. Criticism and prophecy in media coverage of AI controversies. Society for Social Studies of Science; 2021.
  19. Cruz T.M. Perils of data-driven equity: safety-net care and big data’s elusive grasp on health inequality. Big Data & Society. 2020; 7 (1).
  20. Daniels J. Cyber Racism: White Supremacy Online and the New Attack on Civil Rights. Rowman & Littlefield Publishers; 2009.
  21. Kalluri P. Don’t ask if artificial intelligence is good or fair, ask how it shifts power. Nature. 2020; 583.
  22. Keller R. Doing Discourse Research: An Introduction for Social Scientists. Sage; 2012.
  23. Lasswell H. Function of mass communication in society. Mass Communications. Ed. by W Schramm. Urbana; 1960.
  24. Ossewaarde M., Gulenc,E. National varieties of artificial intelligence discourses: Myth, utopianism, and solutionism in West European policy expectations. Computer. 2020; 53 (11).
  25. Strauß S. Deep automation bias: How to tackle a wicked problem of AI? Big Data and Cognitive Computing. 2021; 5 (2).
  26. Suresh H., Guttag J. A framework for understanding sources of harm throughout the machine learning life cycle. Equity and Access in Algorithms, Mechanisms, and Optimization. Sage; 2021.
  27. Trotsuk I.V. All power to the experts? Contradictions of the information society as both depending on and devaluating expertise. Russian Sociological Review. 2021; 20 (1).
  28. Trotsuk I. When methodology beats techniques; or, why we prefer discourse and narrative analysis to interpret textual data. Russian Sociological Review. 2015; 14 (3).
  29. Webster J., Phalen P. Victim, consumer or commodity. Audience models in communication policy. Audience-Making. How the Media Create the Audience. Sage; 1994.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».