Элементы искусственного интеллекта для задачи определения положения автотранспортного средства на изображении
- Авторы: Катермина Т.С.1, Лазоренко Е.В.1
-
Учреждения:
- Нижневартовский государственный университет
- Выпуск: Том 9, № 3 (2022)
- Страницы: 9-18
- Раздел: Статьи
- URL: https://journals.rcsi.science/2313-223X/article/view/147145
- DOI: https://doi.org/10.33693/2313-223X-2022-9-3-9-18
- ID: 147145
Цитировать
Аннотация
Полный текст
Открыть статью на сайте журналаОб авторах
Татьяна Сергеевна Катермина
Нижневартовский государственный университет
Email: nggu-lib@mail.ru
кандидат технических наук; доцент кафедры информатики и методики преподавания информатики Нижневартовск, Ханты-Мансийский автономный округ - Югра, Российская Федерация
Евгений Викторович Лазоренко
Нижневартовский государственный университет
Email: rolaraltis@hotmail.com
магистрант Нижневартовск, Ханты-Мансийский автономный округ - Югра, Российская Федерация
Список литературы
- Atibi M., Atouf I., Boussaa M., Bennis A. Real-time detection of vehicles using the haar-like features and artificial neuron networks // Procedia Computer Science. 2015. Vol. 73. Pp. 24-31. ISSN 1877-0509. URL: https://doi.org/10.1016/j.procs.2015.12.044.
- Dongpo Xu, Shengdong Zhang, Huisheng Zhang, Danilo P. Mandic. Convergence of the RMSProp deep learning method with penalty for nonconvex optimization // Neural Networks. 2021. Vol. 139. Pp. 17-23. ISSN 0893-6080. URL: https://doi.org/10.1016/j.neunet.2021.02.011.
- Fan Q., Brown L., Smith J. A closer look at Faster R-CNN for vehicle detection // IEEE Intelligent Vehicles Symposium. 2016. Vol. IV. Pp. 124-129. doi: 10.1109/IVS.2016.7535375.
- Hoanh Nguyen. Improving faster R-CNN framework for fast vehicle detection // Mathematical Problems in Engineering. 2019. Article ID: 3808064. 11 p. URL: https://doi.org/10.1155/2019/3808064
- Khokhlov et al. Tiny-YOLO object detection supplemented with geometrical data // IEEE 91st Vehicular Technology Conference (VTC2020-Spring). 2020. Pp. 1-5. doi: 10.1109/VTC2020-Spring48590.2020.9128749.
- Laroca R. et al. A Robust real-time automatic license plate recognition based on the YOLO detector // International Joint Conference on Neural Networks (IJCNN). 2018. Pp. 1-10. doi: 10.1109/IJCNN.2018.8489629.
- Maity M., Banerjee S., Sinha Chaudhuri S. Faster R-CNN and YOLO based Vehicle detection: A survey // 5th Inter-national Conference on Computing Methodologies and Communication (ICCMC). 2021. Pp. 1442-1447. doi: 10.1109/ICCMC51019.2021.9418274.
- Manana M., Tu C., Owolawi P.A. Preprocessed faster RCNN for vehicle detection // International Conference on Intelligent and Innovative Computing Applications (ICONIC). 2018. Pp. 1-4. doi: 10.1109/ICONIC.2018.8601243.
- Miao Y., Liu F., Hou T. et al. A nighttime vehicle detection method based on YOLO v3 // Chinese Automation Congress (CAC). 2020. Pp. 6617-6621. doi: 10.1109/CAC51589.2020.9326819.
- Rybski P.E., Huber D., Morris D.D., Hoffman R. Visual classification of coarse vehicle orientation using Histogram of Oriented Gradients features // IEEE Intelligent Vehicles Symposium. 2010. Pp. 921-928. doi: 10.1109/IVS.2010. 5547996.
- Shi K., Bao H., Ma N. Forward vehicle detection based on incremental learning and fast R-CNN // 13th International Conference on Computational Intelligence and Security (CIS). 2017. Pp. 73-76. doi: 10.1109/CIS.2017.00024.
- Shin H.-C. et al., Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning // IEEE Transactions on Medical Imaging. 2016. Vol. 35. No. 5. Pp. 1285-1298. doi: 10.1109/TMI.2016.2528162.
- Xu Y., Yu G., Wu X. et al. An enhanced Viola-Jones vehicle detection method from unmanned aerial vehicles ima-gery // IEEE Transactions on Intelligent Transportation Systems. 2017. Vol. 18. No. 7. Pp. 1845-1856. doi: 10.1109/TITS.2016.2617202.
- Zehang Sun, Bebis G., Miller R. On-road vehicle detection using Gabor filters and support vector machines // 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No. 02TH8628). 2002. Vol. 2. Pp. 1019-1022. doi: 10.1109/ICDSP.2002.1028263.
- Zoev V., Beresnev A.P., Markov N.G. Convolutional neural networks of the YOLO class in computer vision systems for mobile robotic complexes // International Siberian Conference on Control and Communications (SIBCON). 2019. Pp. 1-5. doi: 10.1109/SIBCON.2019.8729605.
- Катермина Т.С., Сибагатулин А.Ф. Применение методов искусственного интеллекта к задаче диагностики заболеваний дыхательных путей // Computational Nanotechnology. 2022. Т. 9. № 2. С. 92-103. doi: 10.33693/2313-223X-2022-9-2-92-103.
- Разинкин В.Б., Катермина Т.С. Распознавание лица по фотографии // International Journal of Advanced Studies. 2018. Т. 8. № 1-2. С. 171-180.
Дополнительные файлы
