Элементы искусственного интеллекта для задачи определения положения автотранспортного средства на изображении

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Статья посвящена решению задачи определения границ автотранспортного средства на изображении, как промежуточного этапа для решения других, более локальных задач, связанных с идентификацией автотранспорта на изображении или в видео потоке. В статье подробно рассматриваются существующие методы и подходы к решению задач компьютерного зрения, в том числе современные архитектуры нейронных сетей. В качестве основной модели была выбрана сверточная нейронная сеть Tiny-YOLO-InceptionResNet, которая была модифицирована в процессе проведения исследования. Архитектура полученной нейронной сети приведена в данной работе. Перед обучением нейронной сети производилась работа по подготовке и предобработке набора данных, которая позволила более рационально использовать вычислительные ресурсы во время обучения. В результате проведенного исследования была разработана модель нахождения границ автотранспортного средства на изображении, точность которой равна 88%.

Об авторах

Татьяна Сергеевна Катермина

Нижневартовский государственный университет

Email: nggu-lib@mail.ru
кандидат технических наук; доцент кафедры информатики и методики преподавания информатики Нижневартовск, Ханты-Мансийский автономный округ - Югра, Российская Федерация

Евгений Викторович Лазоренко

Нижневартовский государственный университет

Email: rolaraltis@hotmail.com
магистрант Нижневартовск, Ханты-Мансийский автономный округ - Югра, Российская Федерация

Список литературы

  1. Atibi M., Atouf I., Boussaa M., Bennis A. Real-time detection of vehicles using the haar-like features and artificial neuron networks // Procedia Computer Science. 2015. Vol. 73. Pp. 24-31. ISSN 1877-0509. URL: https://doi.org/10.1016/j.procs.2015.12.044.
  2. Dongpo Xu, Shengdong Zhang, Huisheng Zhang, Danilo P. Mandic. Convergence of the RMSProp deep learning method with penalty for nonconvex optimization // Neural Networks. 2021. Vol. 139. Pp. 17-23. ISSN 0893-6080. URL: https://doi.org/10.1016/j.neunet.2021.02.011.
  3. Fan Q., Brown L., Smith J. A closer look at Faster R-CNN for vehicle detection // IEEE Intelligent Vehicles Symposium. 2016. Vol. IV. Pp. 124-129. doi: 10.1109/IVS.2016.7535375.
  4. Hoanh Nguyen. Improving faster R-CNN framework for fast vehicle detection // Mathematical Problems in Engineering. 2019. Article ID: 3808064. 11 p. URL: https://doi.org/10.1155/2019/3808064
  5. Khokhlov et al. Tiny-YOLO object detection supplemented with geometrical data // IEEE 91st Vehicular Technology Conference (VTC2020-Spring). 2020. Pp. 1-5. doi: 10.1109/VTC2020-Spring48590.2020.9128749.
  6. Laroca R. et al. A Robust real-time automatic license plate recognition based on the YOLO detector // International Joint Conference on Neural Networks (IJCNN). 2018. Pp. 1-10. doi: 10.1109/IJCNN.2018.8489629.
  7. Maity M., Banerjee S., Sinha Chaudhuri S. Faster R-CNN and YOLO based Vehicle detection: A survey // 5th Inter-national Conference on Computing Methodologies and Communication (ICCMC). 2021. Pp. 1442-1447. doi: 10.1109/ICCMC51019.2021.9418274.
  8. Manana M., Tu C., Owolawi P.A. Preprocessed faster RCNN for vehicle detection // International Conference on Intelligent and Innovative Computing Applications (ICONIC). 2018. Pp. 1-4. doi: 10.1109/ICONIC.2018.8601243.
  9. Miao Y., Liu F., Hou T. et al. A nighttime vehicle detection method based on YOLO v3 // Chinese Automation Congress (CAC). 2020. Pp. 6617-6621. doi: 10.1109/CAC51589.2020.9326819.
  10. Rybski P.E., Huber D., Morris D.D., Hoffman R. Visual classification of coarse vehicle orientation using Histogram of Oriented Gradients features // IEEE Intelligent Vehicles Symposium. 2010. Pp. 921-928. doi: 10.1109/IVS.2010. 5547996.
  11. Shi K., Bao H., Ma N. Forward vehicle detection based on incremental learning and fast R-CNN // 13th International Conference on Computational Intelligence and Security (CIS). 2017. Pp. 73-76. doi: 10.1109/CIS.2017.00024.
  12. Shin H.-C. et al., Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning // IEEE Transactions on Medical Imaging. 2016. Vol. 35. No. 5. Pp. 1285-1298. doi: 10.1109/TMI.2016.2528162.
  13. Xu Y., Yu G., Wu X. et al. An enhanced Viola-Jones vehicle detection method from unmanned aerial vehicles ima-gery // IEEE Transactions on Intelligent Transportation Systems. 2017. Vol. 18. No. 7. Pp. 1845-1856. doi: 10.1109/TITS.2016.2617202.
  14. Zehang Sun, Bebis G., Miller R. On-road vehicle detection using Gabor filters and support vector machines // 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No. 02TH8628). 2002. Vol. 2. Pp. 1019-1022. doi: 10.1109/ICDSP.2002.1028263.
  15. Zoev V., Beresnev A.P., Markov N.G. Convolutional neural networks of the YOLO class in computer vision systems for mobile robotic complexes // International Siberian Conference on Control and Communications (SIBCON). 2019. Pp. 1-5. doi: 10.1109/SIBCON.2019.8729605.
  16. Катермина Т.С., Сибагатулин А.Ф. Применение методов искусственного интеллекта к задаче диагностики заболеваний дыхательных путей // Computational Nanotechnology. 2022. Т. 9. № 2. С. 92-103. doi: 10.33693/2313-223X-2022-9-2-92-103.
  17. Разинкин В.Б., Катермина Т.С. Распознавание лица по фотографии // International Journal of Advanced Studies. 2018. Т. 8. № 1-2. С. 171-180.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».