Control System for Waterjet Cutting Process with Swirling Working Fluid Jet

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In mechanical engineering, the procurement process is one of the most important in the life cycle stage of manufacturing products from metal materials. In this regard, there are disadvantages in the manufacture of parts: low productivity, complexity and high cost of cutting tools, and the impossibility of cutting. The work proposes an approach to increase the productivity of using the cutting properties of abrasive grains and expanding the contact area of a waterjet jet with the workpiece surface being processed by twisting the jet and adjusting the values of the jet oscillation frequency to the thickness of the workpiece. As a result of research verification, the approach showed good prediction accuracy.

Sobre autores

Viktor Ivanov

National Research Technological University “MISiS”

Autor responsável pela correspondência
Email: viktor_ivanov_61@mail.ru
ORCID ID: 0000-0002-1264-313X

postgraduate student, Department of Infocommunication Technologies

Rússia, Moscow

Evgeniy Kalashnikov

National Research Technological University “MISiS”

Email: e.a.kalashnikov@mail.ru

Cand. Sci., associate professor, Department of Infocommunication Technologies

Rússia, Moscow

Bibliografia

  1. Ivanov V.V., Ivanov S.V., Ivanov Vl.V. Simulation experimental studies of the amount of metal removal from waterjet processing modes using information technologies. Computational Nanotechnology. 2015. No. 4. Pp. 74–78. (In Rus.)
  2. Ivanov V.V., Kalashnikov E.A., Bakradze L.G. Control system for the waterjet cutting process. Path of Science. International Scientific Journal. 2023. No. 5 (111). Pp. 24–27. (In Rus.)
  3. Ivanov V.V., Ivanov S.V. A program for calculating and constructing an optimal technological process for waterjet cutting by swirling a jet of working fluid. Certificate of state registration of the computer program No. 2020617624, 07/08/2020.
  4. Ivanov V.V. Development of an automated software and hardware complex for intelligent support and optimal configuration of waterjet machines with numerical control. Computational Nanotechnology. 2015. No. 2. Pp. 55–61. (In Rus.)
  5. Ivanov V.V., Vasin A.N., Iznairov B.M. Method of waterjet processing with jet oscillation. Pat. 2688007 of Russian Federation No. 2017143280, 12/11/2017. Publ. 05/17/2019. Bull. No. 14.
  6. Korolev A.V. Study of the formation processes of tool and part surfaces during abrasive processing. Saratov: Publishing House of the Saratov University. 1975. 191 p.
  7. Shpilev V.V., Reshetnikov M.K. Modeling of a heterogeneous jet during waterjet cutting. Bulletin of the Saratov State Technical University. 2011. No. 3 (58). Pp. 154–158. (In Rus.)
  8. Shpilev V.V., Reshetnikov M.K., Bereda N.N. Modeling of a swirling waterjet jet during waterjet cutting. Bulletin of the Saratov State Technical University. 2011. No. 2 (56). P. 163–168. (In Rus.)

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. The main form of software package GAR

Baixar (334KB)
3. Fig. 2. Flowchart of software product algorithm

Baixar (209KB)
4. Fig.3. Block diagram of the software product

Baixar (78KB)
5. Fig. 4. Simulation results in the software package

Baixar (545KB)
6. Fig. 5. Graph of the waterjet cutting process with additional movement of the working jet

Baixar (217KB)
7. Fig. 6. Dependence of the number of particles passing per minute through the nozzle on the concentration of abrasive particles

Baixar (116KB)
8. Fig. 7. Dependence of movement speed on the granularity of abrasive particles

Baixar (104KB)
9. Fig. 8. Dependence of the amount of abrasive particles passing in 1 second on the grain size

Baixar (102KB)
10. Fig. 9. Simplex method of mathematical process model

Baixar (128KB)
11. Fig. 10. Micro photo of a processed workpiece made of steel 20

Baixar (172KB)
12. Fig. 11. Profilometer readings of the sample under study

Baixar (499KB)
13. Fig. 12. Surface quality of steel sheets 20: a – before processing; b – after processing

Baixar (47KB)


Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies