Application of Artificial Intelligence Methods to the Task of Diagnosing Respiratory Diseases

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article considers the problem of diagnostics of respiratory diseases. The authors have chosen as a possible direction of solution of the given problem neuronetwork convolution model, developed and showed its possible architecture. The article also shows what steps of data pre-processing must be produced for the best result of model training. The authors suggest that the diagnosis of respiratory diseases should be carried out by analyzing the characteristics of audio recordings of breathing. Such audio recordings are already being produced, making it possible for the network to use a data set that is freely available on the Internet. The paper contains a list of characteristics of audio recordings of breathing that can be used to analyze and make a preliminary diagnosis. An important part of the work is the analysis of existing modern scientific methods that allow somehow simplify the work of medical personnel and help to preserve the health of the patient. The given results of learning the neural network model show which diseases can be diagnosed with great confidence automatically, and which are more difficult to determine and require additional research.

About the authors

Tatyana S. Katermina

Nizhnevartovsk State University

Email: nggu-lib@mail.ru
Cand. Sci. (Eng.); associate professor at the Department of Informatics and Methods of Teaching Informatics Khanty-Mansi Autonomous Okrug - Yugra, Tyumen region, Nizhnevartovsk, Russian Federation

A. F Sibagatulin

Nizhnevartovsk State University

Email: sibagatulin.azat@yandex.ru
bachelor Khanty-Mansi Autonomous Okrug - Yugra, Tyumen region, Nizhnevartovsk, Russian Federation

References

  1. Bengio Y., Goodfellow I.J., Courville A. Deep Learning. Book in preparation for MIT Press, 2015.
  2. Chauhan N.S. Audio data analysis using deep learning with Python [Electronic resource]. URL: https://www.kdnuggets.com/2020/02/audio-data-analysis-deep-learning-python-part-1.html (data of accesses: 10.06.2022)
  3. Chen M., Li H., Fan H. et al. ConCeptCNN: A novel multi-filter convolutional neural network for the prediction of neurodevelopmental disorders using brain connectome // Med. Physics. 2022. Vol. 49. No. 5. Pp. 3171-3184. doi: 10.1002/mp.15545
  4. Cires D., Meier U., Masci J., Schmidhuber J. Multi-column deep neural network for traffic sign classification // Neural Networks. 2012. Vol. 32. Pp. 333-338.
  5. Cires D., Giusti A., Gambardella L.M., Schmidhuber J. Deep neural networks segment neuronal membranes in electron microscopy images // Advances in Neural Information Processing Systems. 2012. Pp. 2843-2851.
  6. Dieleman S., Brakel P., Schrauwen B. Audiobased music classification with a pretrained convolutional network // Proceedings of the 12th International Society for Music Information Retrieval (ISMIR) Conference. 2011. Pp. 669-674.
  7. Gandhi R. Naive bayes classifier [Electronic resource]. URL: https://towardsdatascience.com/naive-bayes-classifier-81d512f50a7c (data of accesses: 10.06.2022).
  8. Graves A., Mohamed A., Hinton G. Speech recognition with deep recurrent neural networks. ICASSP, 2013.
  9. Guan M. et al. Natural language processing and recurrent network models for identifying genomic mutation-associated cancer treatment change from patient progress notes // JAMIA Open. 2019. Vol. 2. No. 1. Pp. 139-149.
  10. Phan H. et al. Audio scene classification with deep recurrent neural networks // Interspeech. 2017. URL: https://www.researchgate.net/publication/315096213_Audio_Scene_Classification_with_Deep_Recurrent_Neural_Networks
  11. Karol J. Environmental sound classification with convolutional neural networks // IEEE International Workshop on Machine Learning for Signal Processing (MLSP). 2015.
  12. Kosmas I., Papadopoulos T., Michalakelis C. Applying Internet of things in healthcare: A survey. 2021. URL: http://dx.doi.org/10.31031/prm.2021.04.000592
  13. Krizhevsky A., Sutskever I., Hinton G.E. ImageNet classification with deep convolutional neural networks // Advances in Neural Information Processing Systems. 2012. Pp. 1097-1105.
  14. Mydukuri R., Kallam S., Patan R. et al. Deming least square regressed feature selection and Gaussian neuro-fuzzy multi-layered data classifier for early COVID prediction // Expert Systems. 2022. Vol. 39. No. 5. doi: 10.1111/exsy.12694.
  15. Nagarajan R., Thirunavukarasu R. A neuro-fuzzy based healthcare framework for disease analysis and prediction // Multimedia Tools and Applications. 2022. Vol. 81. Pp. 11737-11753.
  16. Noble W. What is a support vector machine? // Nat. Biotechnol. 2006. No. 24. Pp. 1565-1567. URL: https://doi.org/10.1038/nbt1206-1565
  17. Olah C. Understanding LSTM Networks [Electronic resource]. URL: http://colah.github.io/posts/2015-08-Understanding-LSTMs/ (data of accesses: 10.06.2022).
  18. Rocha B.M., Filos D., Mendes L. et al. Α respiratory sound database for the development of automated classification // In Precision Medicine Powered by pHealth and Connected Health. Singapore: Springer, 2018. Pp. 51-55.
  19. Sermanet P. et al. Pedestrian detection with unsupervised multi-stage feature learning // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE. 2013. Pp. 3626-3633.
  20. Simard P.Y., Steinkraus D., Platt J.C. Best practices for convolutional neural networks applied to visual document analysis // ICDAR. 2003. Vol. 3. Pp. 958-962.
  21. Srivastava N. et al. Dropout: a simple way to prevent neural networks from overfitting // J. Mach. Learn. Res. 2014. No. 15. Pp. 1929-1958.
  22. Shafiekhani S., Namdar P., Rafiei S. A COVID-19 forecasting system for hospital needs using ANFIS and LSTM models: A graphical user interface unit // Digital Health. 2022. doi: 10.1177/20552076221085057.
  23. Sharma A., Banerjee P.S., Sharma A., Yadav A. A French to English language translator using recurrent neural network with attention mechanism. In: Nanoelectronics, circuits and communication systems / V. Nath, J. Mandal (eds.) // NCCS 2018. Lecture Notes in Electrical Engineering. 2020. Vol. 642. URL: https://doi.org/10.1007/978-981-15-2854-5_38
  24. Taunk K., De S., Verma S., Swetapadma A. A brief review of nearest neighbor algorithm for learning and classification // International Conference on Intelligent Computing and Control Systems (ICCS). 2019.
  25. Qasim A., Pettirsch A. Recurrent Neural Networks for video object detection. 2020. URL: https://arxiv.org/abs/2010.15740
  26. Gulyaev M.A., Zhubr A.M., Tsallagova M.M. Application of regression analysis in medicine. Science of the Present and the Future. 2019. Vol. 1. Pp. 16-19. (In Rus.)
  27. Savushkina O.I., Chernyak A.V., Kameneva M.Yu. et al. A role of impulse oscillometry for diagnosis of mild bronchial obstruction. Pulmonologiya. 2018. Vol. 28. No. 4. Pp. 391-398. (In Rus.) URL: https://doi.org/10.18093/0869-0189-2018-28-4-391-398
  28. Trushina E.Yu., Kostina E.M., Molotilov B.A. et al. Method of differential diagnosis of types of respiratory tract inflammation in patients with bronchial asthma and chronic obstructive pulmonary disease. Patent for invention G01N 33/48, 2019. URL: https://elibrary.ru/item.asp?id=37349980

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».