Identification and Extraction of Electrophysical Parameters for Solar Cell Models by Experimental Data

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article summarizes the methodology of identification and extraction of electrophysical characteristics of solar cells for various models based on experimental data and equivalent one-, two-, three-diode circuits. A technique based on computer modeling in the Wolfram Mathematica analytical system and in the Mathcad computer algebra system is proposed. The technique allows to compare theoretical and experimental data and deal with different models in both directions – from experiment to theory and vice versa. Experimental work was also carried out to create solar cells based on porous silicon with antireflection coatings (ZnS, DyF3, ZnS + DyF3) and with SiC/Si heterojunctions. Measurements of the I-V and P-V of experimental photoconverters, as well as their surface resistances from the sides of phosphorus and boron doping on the formation of the p-n-junction, were carried out. The main purpose of the study is to develop a methodology for optimizing solar cells and to present modeling and analysis methods that can be used in the development of photobetaconverters to ensure maximum power.

About the authors

Mikhail V. Dolgopolov

Samara State Technical University; Samara National Research University named after Academician S.P. Korolev

Author for correspondence.
Email: mikhaildolgopolov68@gmail.com
ORCID iD: 0000-0002-8725-7831
SPIN-code: 2104-1911

Candidate of Physics and Mathematics, Associate Professor; associate professor at the Department of Higher Mathematics; Head of the joint Research Laboratory of Mathematical Physics NIL-319

Russian Federation, Samara; Samara

Alexander S. Chipura

Samara State Technical University; Samara National Research University named after Academician S.P. Korolev

Email: al_five@mail.ru
ORCID iD: 0009-0004-0425-0653
SPIN-code: 8992-7768

lecturer; student

Russian Federation, Samara; Samara

Ivan A. Shishkin

Samara National Research University named after Academician S.P. Korolev

Email: shishkinivan9@gmail.com
ORCID iD: 0000-0002-8413-9661
SPIN-code: 2233-8550

postgraduate student

Russian Federation, Samara

References

  1. Afanasyev V.P., Terukov E.I., Sherchenkov A.A. Thin-film silicon-based solar cells. 2nd edition. St. Petersburg: Publishing House of St. Petersburg State Electrotechnical University “LETI”, 2011. 168 p.
  2. Koltun M.M. Solar cells. N.S. Lidorenko (ed.). Moscow: Nauka, 1987. 190 p.
  3. Mohammadreza Ebrahimi S., Salahshour E., Malekzadeh M., Gordillo F. Parameters identification of PV solar cells and modules using flexible particle swarm optimization algorithm. Energy. 2019. Vol. 179. Pp. 358–372.
  4. Bonanno F., Capizzi G., Napoli C. et al. A radial basis function neural network based approach for the electrical characteristics estimation of a photovoltaic module. Appl. Energy. 2012. Vol. 97. Pp. 956–961.
  5. Jordehi A.R. Parameter estimation of solar photovoltaic (PV) cells: A review. Renew. Sustain. Energy Rev. 2016. Vol. 61. Pp. 354–371.
  6. Pillai D.S., Rajasekar N. Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems. Renew. Sustain. Energy Rev. 2018. Vol. 82. Pp. 3503–3525.
  7. Carrero C., Ramirez O., Rodrigez I., Platero C.A. Accurate and fast convergence method for parameter estimation of PV generators based on three main points of the I-V curve. Renew. Energy. 2011. Vol. 36. No. 11. Pp. 2972–2977.
  8. Dolgopolov M.V., Elisov M.V., Rajapov S.A., Chipura A.S. Scaling models of electrical properties of photo- and beta-converters with nano-heterojunctions. Computational Nanotechnology. 2023. Vol. 10. No. 1. Pp. 138–146. (In Rus.)
  9. Ishaque K., Salam Z. An improved modeling method to determine the model parameters of photovoltaic (PV) modules using differential evolution (DE). Sol. Energy. 2011. Vol. 85. Pp. 2349–2359.
  10. Ishaque K., Salam Z., Syafaruddin. A comprehensive MATLAB Simulink PV systemsimulator with partial shading capability based on two-diode model’. Sol. Energy. 2011. Vol. 85. No. 9. Pp. 2217–2227.
  11. Tong N.T., Pora W. A parameter extraction technique exploiting intrinsic properties of solar cells. Appl. Energy. 2016. Vol. 176. P. 104e15.
  12. Chen Y., Sun Y., Meng Z. An improved explicit double-diode model of solar cells: Fitness verification and parameter extraction. Energy Convers. Manag. 2018. Vol. 169. P. 345e58.
  13. Ćalasan M., Abdel Aleem S.H.E., Zobaa A.F. On the root mean square error (RMSE) calculation for parameter estimation of photovoltaic models: A novel exact analytical solution based on Lambert W function. Energy Conversion and Management. 2020. No. 210. P. 112716.
  14. Wolf P., Benda V. Identification of PV solar cells and modules parameters by combining statistical and analytical methods. Solar Energy. 2013. Vol. 93. Pp. 151–157.
  15. Zagrouba M., Sellami A., BouaÏcha M., Ksouri M. Identification of PV solar cells and modules parameters using the genetic algorithms: application to maximum power extraction. Solar Energy. 2010. Vol. 84. Pp. 860–866.
  16. Chaibi Y., Salhi M., El-Jouni A., Essadki A. A new method to extract the equivalent circuit parameters of a photovoltaic panel. Solar Energy. 2018. Vol. 163. Pp. 376–386.
  17. Cheddadi F., Cheddadi Y., Errahimi F., Gaga A. Numerical approach for parameter extraction of a photovoltaic module based on datasheet and five parameters model. International Journal of Digital Signals and Smart Systems. 2021. No. 5. Pp. 167–181.
  18. Cheddadi Y., Cheddadi F., Errahimi F., Es-Sbai N. Extremum Seeking Control-based Global maximum power point tracking algorithm for PV array under partial shading conditions. In: International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS). Fez, Morocco, 2017. Pp. 1–6.
  19. Fahim S.R., Hasanien H.M., Turky R.A. et al. Comprehensive review of photovoltaic modules models and algorithms used in parameter extraction. Energies. 2022. No. 15.P. 8941.
  20. Rawa M., Calasan M., Abusorrah A, et al. Single diode solar cells-improved model and exact current-voltage analytical solution based on lambert’s W function. Sensors. 2022. No. 22. P. 4173.
  21. Lunin L.S., Pashchenko A.S. Simulation and investigation of the GaAs and GaSb photovoltaic cell performance. Tech. Phys. 2011. No. 56. Pp. 1291–1296. (In Rus.)
  22. Muminov R.A., Imamov E.Z., Rakhimov R.Kh., Askarov M.A. Factors of efficient generation of electricity in a solar cell with nanohetero junctions. Computational Nanotechnology. 2023. Vol. 10. No. 1. Pp. 119–127. (In Rus.)
  23. Imamov E.Z., Muminov R.A., Rakhimov R.Kh. et al. Modeling of the electrical properties of a solar cell with many nano-hetero junctions. Computational Nanotechnology. 2022. Vol. 9. No. 4. Pp. 70–77. (In Rus.)
  24. Latukhina N.V., Lizunkova D.A., Shishkin I.A., Paranin V.D. Optical and electrical properties of single- and double-layer coatings of photosensitive structures with a porous layer. XVI All-Russian Youth Samara Competition-Conference on Optics and Laser Physics: Conference Proceedings. Samara. November 13–17, 2018. Samara: P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 2018. Pp. 136–141.
  25. Gurskaya A.V., Chepurnov V.I., Latukhina N.V., Dolgopolov M.V. Method for obtaining a porous layer of Silicon Carbide heterostructure on a Silicon Substrate. Patent of the Russian Federation No. 2653398 publ. 24.01.2018. Byul. No. 3. priority 19.07.2016.
  26. Pikus G.E. Fundamentals of the theory of semiconductor devices. Moscow: Nauka, 1965. 448 p.
  27. Banwell T. C., Jayakumar A. Exact Analytical Solution for Current Flow Through Diode with Series Resistance. Electronics Lett. 2000. No. 36. Pp. 291–292. –
  28. Latukhina N.V., Lizunkova D.A., Rogozhina G.A., Shishkin I.A. Multilayer structure based porous silicon for solar cells. AIP Conference Proceedings. 2020. No. 2276. Рp. 020039-1–020039-4.
  29. Shishkina D.A., Poluektova N.A., Shishkin I.A. Photovoltaic characteristics of structures with porous silicon obtained by various technological plans. Journal of Physics: Conference Series. 2021. Vol. 2086. No. 1. P. 01210.
  30. Chepurnov V.I., Puzyrnaya G.V., Gurskaya A.V. et al. Experimental investigation of semiconductor structures of the power source based on carbon-14. Physics of Wave Processes and Radio Engineering Systems. 2019. Vol. 22. No. 3. Pp. 55–67. (In Rus.)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The general equivalent three-diode scheme of a photobetavoltaic cell with effective resistances

Download (86KB)
3. Fig. 2. Construction of Lambert’s W-function

Download (194KB)
4. Fig. 3. Flowchart

Download (573KB)
5. Fig. 4. Experimental solar cells

Download (553KB)
6. Fig. 5. I-V and P-V curves of samples No. 2 (a) and 4 (b)

Download (557KB)
7. Fig. 6. I-V and P-V curves of samples No. 7 (a) and 24 (b)

Download (584KB)
8. Fig. 7. I-V and P-V curves of samples No. 29 (a) and 37 (b)

Download (592KB)
9. Fig. 8. I-V and P-V curves of sample No. 48

Download (277KB)
10. Fig. 9. I-V (a) and P-V (b) curves of sample with heterojunction SiC/Si No. 1

Download (363KB)
11. Fig. 10. I-V (a) and P-V curves of sample with heterojunction SiC/Si No. 8

Download (397KB)
12. Fig. 11. I-V (a) and P-V (b) curves of sample with heterojunction SiC/Si No. 12

Download (402KB)
13. Fig. 12. I-V (a) and P-V (b) curves of sample with heterojunction SiC/Si No. 15

Download (388KB)
14. Fig. 13. Volt-ampere characteristic for a single-diode model SDM

Download (162KB)
15. Fig. 14. Characteristics I-V and P-V curves for a common equivalent single diode model (1) GaAs (a) and SiC (b)

Download (350KB)
16. Fig. 15. Characteristics I-V of the experimental and theoretical curve

Download (167KB)


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».