Electrophysical Properties of a Solar Cell with Non-Traditional Contact Structures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Based on a number of experimental and patented works, the competitive efficiency of a solar cell with non-traditional contact structures is substantiated in detail. It is shown that the efficiency of a solar cell depends on the innovative choice of its contact materials (nano-sized crystalline lead chalcogenide and structureless non-crystalline silicon). The specific electro physical properties of lead chalcogenide and silicon are considered, providing a significant improvement in the converting properties of the solar cell. A specific mechanism for the formation of a contact field due to the participation of current carriers from localized defect energy states of the silicon band gap is presented. By solving the Poisson equation, the parameters of the contact field of the – nano-heterojunction were calculated.

About the authors

Mardon A. Askarov

Karakalpak State University named after Berdakh of the Ministry of Higher and Secondary Specialized Education of the Republic of Uzbekistan

Author for correspondence.
Email: asqarovm@list.ru
ORCID iD: 0000-0003-4627-3170

PhD student at the Department of Semiconductors Physics

Uzbekistan, Nukus, Republic of Karakalpakstan

Erkin Z. Imamov

Tashkent University of Information Technologies named after Muhammad al-Khwarizmi (TUIT) of the Ministry for Development of Information Technologies and Communications of the Republic of Uzbekistan

Email: erkinimamov@mail.ru
ORCID iD: 0009-0007-4952-1842

Doct. Sci. (Phys. and Math.), Professor, Department of Physics

Uzbekistan, Tashkent

Ramizulla A. Muminov

Physical-Technical Institute of the SPA “Physics-Sun” of the Academy of Science of Uzbekistan

Email: detector@uzsci.net
ORCID iD: 0000-0001-7243-595X

Academician, Doct. Sci. (Phys. and Math.), Professor

Uzbekistan, Tashkent

References

  1. Imamov E.Z., Dzhalalov T.A., Muminov R.A. Electrophysical properties of the “nano-object–semiconductor” new contact structure. Technical Physics. 2015. Vol. 60. No. 5. Pp. 740–745.
  2. Dzhalalov T.A., Porter L.M., Imamov E.Z., Muminov R.A. Theory of the electrostatic field in nanosized p-n-junctions. UzJPh – Uzbek Journal of Physics. 2015. Vol. 17. No. 3. Pp. 131–139. (In Rus.)
  3. Imamov E.Z., Jalalov T.A., Muminov R.A., Rakhimov H.Kh. The theoretical model of new contact structure “nanoobject–semicondactor”. Computational Nanotechnology. 2015. No. 4. Pp. 58–63.
  4. Dzhalalov T.A., Imamov E.Z., Muminov R.A. The electrical properties of a solar cell with multiple nanoscale p-n-transitions. Applied Solar Energy. 2014. Vol. 50. No. 4. Pp. 228–232.
  5. Jalalov T., Imamov E. PRSCIiples of nanosolar energy. Current problems of combining and developing two technologies: Monograph. Saarbrucken: LAP LAMBERT Academic Publishing, 2016. P. 113. ISBN: 978-3-659-89808-2.
  6. Imamov E.Z., Djalalov T.A., Muminov R.A., Rakhimov R.Kh. The difference between the contact structure with nanosize inclusions from the semiconductor photodiodes. Computational Nanotechnology. 2016. No. 3. Pp. 203–207.
  7. Imamov E.Z., Djalalov T.A., Muminov R.A., Rakhimov R.Kh. Unique opportunity to create cheap but effective silicon solar cells. Computational Nanotechnology. 2017. No. 1. Pp. 61–65.
  8. Dzhalalov T.A., Imamov E.Z., Muminov R.A.,Rakhimov R.Kh. Analysis of the role of nanoobjects in reducing the cost of silicon solar cells. Computational Nanotechnology. 2017. No. 3. Pp. 14–18., 30.08.2012.
  9. Dzhalalov T.A., Imamov E.Z., Muminov R.A., Rakhimov R.Kh. Expanding the effective absorption spectrum of solar cells with nanoinclusions, Computational Nanotechnology. 2018. No. 1. Pp. 155–167. (In Rus.)
  10. Jalalov T.A., Imаmov E.Z., Muminov R.A. et al. Solar elements based on noncrystallic silicon with nanostructured impacts. Computational Nanotechnology. 2018. No. 3. Pp. 85–90.
  11. Imamov E.Z., Muminov R.A., Dzhalalov T.A., Karimov Kh.N. The influence of nanotechnological influence on the parameters of the solar cell. Ilmiy Xabarnoma / Scientific Bulletin. 2019. No. 1. Pp. 25–27.
  12. Imamov E.Z., Muminov R.A., Dzhalalov T.A. et al. Nano-technological transformation of the illusory properties of the macrocosm. Uzbek Physical Journal. 2019. No. 3. Pp. 173–179.
  13. Imamov E.Z., Muminov R.A., Dzhalalov T.A., Karimov Kh.N. Silicon solar cell with small p-n-junctions. Physics of Semiconductors and Microelectronics. 2019. No. 3 Pp. 78–87. (In Rus.)
  14. Imamov E.Z., Muminov R.A., Djalalov T.A., Abdullaeva Sh.I. The state of solar energy in Uzbekistan in the framework of the development of renewable energy sources. Scientific Bulletin. Physical and Mathematical Research. 2021. Vol. 3. Issue 1. Pp. 46–51.
  15. Imamov E.Z., Muminov R.A., Rakhimov R.Kh. Mathematical modeling of optimal parameters of atmospheric influence on the properties of the solar module. Computational Nanotechnology. 2020. Vol. 7. No. 2. Pp. 58–63.
  16. Imamov E.Z., Muminov R.A., Rakhimov R.Kh. Analysis of the efficiency of a solar cell with nano-dimensional hetero transitions. Computational Nanotechnology. 2021. Vol. 8. No. 4. Pp. 42–45.
  17. Imamov E.Z., Muminov R.A., Rakhimov R.Kh. and others. Modeling the electrical properties of a solar cell with many nanoheterojunctions. Computational Nanotechnology. 2022. Vol. 9. No. 4. Pp. 70–77. (In Rus.)
  18. Askarov M.A., Imamov E.Z., Muminov R.A., Ismaylov K.A. Formation of a highly efficient silicon solar cell with nanoheterojunctions based on lead chalcogenides. Science and Education in Karakalpakstan. 2022. No. 4-2. Pp. 226–230.
  19. Muminov R.A., Imamov E.Z., Rakhimov R.Kh., Askarov M.A. Factors of efficient generation of electricity in a solar cell with nanoheterojunctions. Computational Nanotechnology. 2023. Vol. 10. No. 1. Pp. 119–127.
  20. Tsoi B. Electromagnetic radiation converter (options). Patent in the Eurasian Patent Office. EP2405487 A1, 30.08.2012.
  21. Tsoi B. Method of manufacturing a beam junction, beam converter of electromagnetic radiation. Patent in the World Intellectual Property Organization. WO 2011/040838 A2. 07.04.2011.
  22. Schaller R.D., Klimov V.I. Phys. Rev. 2004. No. 186601. P. 92.
  23. Schaller R.D., Petruska M.A., Klimov V.I. Appl. Phys. 2005. No. 253102. P. 87.
  24. Stancu V., Pentia E., Goldenblum A. et al. Romanian Journal of Information Science and Technology. 2007. Vol. 10. No. 1. Рp. 53–66.
  25. Springholz G., Bauer G. Molecular beam epitaxy of IV–VI he tero- and nanostructures. Phys. Stat. Sol. (b) 244. 2007. No. 8. Рp. 2752–2767.
  26. Springholz G., Holy V., Pinczolits M., Bauer G. Self-organized growth of three-dimensional quantum-dot crystals with fcc-like stacking and a tunable lattice constant. Science. 1998. Vol. 282. Pp. 734–737.
  27. Raab A., Springholz G. Controlling the size and density of self-assembled PbSe quantum dots by adjusting the substrate temperature and layer thickness. Appl. Phys. Lett. 2002. Vol. 81. No. 13. Pp. 2457–2459.
  28. Gusev A.I. Nanomaterials, nanostructures, nanotechnologies. Moscow: Fizmatlit, 2005. 416 p.
  29. Ledentsov N.N., Ustinov V.M., Shchukin V.A. et al. Heterostructures with quantum dots: Production, properties, lasers. FTP. 1998. Vol. 32. No. 4. Pp. 385–410. (In Rus.)
  30. Prigozhin I.R., Stengers I. Time, chaos, quantum. Towards a solution to the paradox of time. Moscow, 2000.
  31. Haken H. Synergetics. Berlin–Heidelberg: Springer, 1997.
  32. Goldenblum A., Pintilie I., Buda M. et al. Journal of Applied Physics. 2006. No. 064105. P. 99.
  33. Klimov V. J. Phys. Chem. 2006. 110. Pp. 16827–16845.
  34. Zimin S.P., Gorlachev E.S. Nanostructured lead chalcogenides: monograph. Yaroslavl: YarSU, 2011. 232 p.
  35. Burstein E., Wheeler R.G., Zemel J.N. Proceedings of the International Conference on the Physics of Semiconductors. Paris, 1964. P. 1065.
  36. Nozik A.J. Physica E. 2002. No. 14. Pp. 115–120.
  37. Schaller R.D., Sykora M., Pietryga J.M., Klimov V.I. Nano Lett. 2006. Vol. 6, No. 3. Pp. 424–429.
  38. Bonch-Bruevich V.L. et al. Electronic theory of disordered semiconductors. Moscow: Nauka, 1981. 384 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig-1

Download (61KB)
3. Fig. 2. For a localized defective energy state an + p the arrow shows the value of E(r) - its binding energy

Download (60KB)
4. Fig. 3

Download (120KB)
5. Fig. 4. State before contact formation (a). The has been formed (b).For simplicity, from Fig. 2 only the upper part (above FS1) of the g(E) curve is considered

Download (93KB)
6. Fig. 5.

Download (71KB)
7. Fig. 6

Download (266KB)


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies