Implementation of Intelligent Automatic Control of Traffic Flows in Urban Areas of Regulation Based on the Use of Fuzzy Models

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article deals with the implementation of automatic traffic control of automobile flows in urban areas of regulation based on the use of fuzzy models. The relevance of the topic of the article is due to the problem of traffic management in the Smart City ecosystem. Traffic flow control is a complex dynamic task, for the solution of which it is proposed to use artificial intelligence methods for processing fuzzy knowledge. The article proposes a model of a traffic flow control system at an intersection based on the use of fuzzy knowledge. Knowledge processing in the system is carried out by the module “Fuzzy Controller”. The input data for the fuzzy controller is information about the number of cars that have passed and information about the current duration of the traffic light phases. The fuzzy controller has a number of output variables corresponding to the number of phases of the traffic light. The fuzzy controller is implemented by means of the fuzzy sets apparatus. The system solves the following tasks: tracking the increase in traffic in the regulation zone; tracking the approach of the flow density on all streets of the regulation zone to the critical one; collecting information about the filling of the road departing from the intersection; implementing indirect unloading of the road section after the intersection, implementing management in transit sections of the city. To increase the efficiency of the model, an improved traffic management process is proposed within the framework of a single intersection, which takes into account traffic situations after the intersection. This approach has a positive impact on traffic in the regulated area due to the decentralized structure of the system consisting of such controlled intersections. The authors also implement the priorities of the directions of movement within the framework of the proposed model. Priorities are set when setting up the system at each of the traffic lights and allow you to speed up the circulation of traffic within the control zone.

About the authors

Egor A. Morozov

Moscow Automobile and Road State Technical University (MADI)

Author for correspondence.
Email: legolassuper@gmail.com

PhD student

Russian Federation, Moscow

Alexandra V. Volosova

Bauman Moscow State Technical University

Email: volosova@bmstu.ru

Cand. Sci. (Eng.), Associate Professor

Russian Federation, Moscow

Ekaterina N. Matyukhina

MIREA – Russian Technological University

Email: makaterina_ski@mail.ru

Cand. Sci. (Eng.), Associate Professor

Russian Federation, Moscow

References

  1. Konstantinov K.S., Volosova A.V. Application of a genetic algorithm for the organization of traffic lights in order to optimize road traffic. Internauka. 2023. No. 23 (293). (In Rus.)
  2. Volosova A.V. Using tensor technology to work with unmanaged systems. Computational Nanotechnology. 2023. Vol. 10. No. 1. Pp. 79–87. (In Rus.)
  3. Maksimychev O.I., Mezentsev K.N., Volosova A.V. Information and communication technologies and elements of artificial intelligence in intelligent transport systems. The World of Transport and Technological Machines. 2023. No. 1-1 (80). Pp. 112–118. (In Rus.)
  4. Ostroukh A.V., Pronin C.B., Volosova A.V. et al. Parametric synthesis of quantum circuits for training perceptron neural networks. In: Intelligent Technologies and Electronic Devices in Vehicle and Road Transport Complex, TIRVED 2022: Conference proceedings, 2022.
  5. Pronin C.B., Maksimychev O.I., Ostroukh A.V. et al. Creating quantum circuits for training perceptron neural networks on the pRSCIiples of Grover’s algorithm. In: Systems of Signals Generating and Processing in the Field of on Board Communications, SOSG 2022: Conference proceedings, 2022.
  6. Yurchik P.F., Maksimychev O.I., Golubkova V.B., Volosova A.V. Tensor analysis of uncertainty in freight transport ULS-systems. In: IOP Conference Series: Materials Science and Engineering. DOI: http://dx.doi.org/10.1088/1757-899X/1159/1/012074.
  7. Volosova A.V., Matiukhina E. Using artificial intelligence for effective decision-making in corporate governance under conditions of deep uncertainty. In: SHS Web of Conf. 2020. No. 89. P. 03008. doi: 10.1051/shsconf/20208903008.
  8. Volosova A.V., Matiukhina E., Akimov D. The use tensor method of dual networks for analysis of the transport and tourist components of sustainable development of territories // E3S Web of Conferences. 2020. No. 208. P. 05012.
  9. Volosova A.V. Implementation of automated drone control using artificial intelligence technologies. Engineer and Industrialist. 2022. No. 4 (58). (In Rus.)
  10. Maksimychev O.I., Volosova A.V., Ismoilov M.I. et al. Platforms and complexes for unmanned technologies in road transport. In: Intelligent Technologies and Electronic Devices in Vehicle and Road Transport Complex. TIRVED 2022: Conference proceedings, 2022.
  11. Volosova A.V., Maksimychev O.I., Ostroukh A.V. et al. Uncertainty processing by tensor algebra means in condition of movement along complex roads. In: Systems of Signals Generating and Processing in the Field of on Board Communications. SOSG 2022: Conference proceedings, 2022.
  12. Kuftinova N.G., Maksimychev O.I., Ostroukh A.V. et al. Data fabric as an effective method of data management in traffic and road systems. In: Systems of Signals Generating and Processing in the Field of on Board Communications, SOSG 2022: Conference proceedings, 2022.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The structure of traffic flow management at the intersection

Download (130KB)
3. Fig. 2. Designation of input linguistic variables

Download (71KB)
4. Fig. 3. Graph of traffic dependence (q) on the flow density (k)

Download (88KB)
5. Fig 4. Example of prioritization

Download (111KB)


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».