Analysis of the Modern Algorithms’ Accuracy for Communities Identification on Networks when Working with Graph Databases

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this paper, we consider methods for extracting communities in networksusing various algorithms. The Girvan-Newman, Louvain, Walktrap and Leiden algorithms were presented and the results of their application on the Wikipedia graph were analyzed. Various metrics were used to assess the quality of the isolated communities, and the results were stored in the Neo4j graph database. The results showed that the Leiden and Louvain algorithms with a resolution equal to one showed the best results compared to other algorithms.

作者简介

Ekaterina Kazakova

Financial University under the Government of the Russian Federation

编辑信件的主要联系方式.
Email: 191841@edu.fa.ru

student at the Faculty of Information Technology and Big Data Analysis of the Financial University under the Government of the Russian Federation

俄罗斯联邦, Moscow

参考

  1. Barabasi A.-L., Albert R. Emergence of scaling in Random networks. Science. 1999. No. 286. Pp. 509–512. doi: 10.1126/science.286.5439.509.
  2. Blondel V.D., Guillaume J.-L., Lambiotte R., Lefebvre E. Fast unfolding of communities in large networks. Journal of Statistical Mechanics Theory and Experiment. 2008. doi: 10.1088/1742-5468/2008/10/P10008.
  3. Bruna J., Li Xiang. Community detection with graph neural networks. 2017.
  4. Circulo library. URL: http://lab41.github.io/Circulo/
  5. Clauset A., Newman M.E.J., Moore C. Finding community structure in very large networks. Physical Review E. 2004. URL: http:// arxiv.org/abs/cond-mat/0408187
  6. Coscia M., Rossetti G., Giannotti F., Pedreschi D. Demon: A local-first discovery method for overlapping communities. KDD. 2012. URL: http://www. michelecoscia.com/wp-content/uploads/2012/08/cosciakdd12.pdf
  7. Blondel V.D., Guillaume J.-L., Lambiotte R., Lefebvre E. Fast unfolding of communities in large networks. J. Stat. Mech. 2008. URL: http://arxiv.org/abs/0803.0476
  8. Fortunato S. Community detection in graphs. Physics Reports. 2009. URL: http://arxiv.org/abs/0906.0612
  9. Girvan M., Newman M.E.J. Community structure in social and biological networks. Proceedings of the National Academy of Sciences. 2001. URL: http://arxiv.org/abs/cond-mat/0112110
  10. Gregory S. An algorithm to find overlapping community structure in networks. Proceeding PKDD 2007 Proceedings of the 11th European Conference on Principles and Practice of Knowledge Discovery in Databases. 2007. URL: http://www.cs.bris.ac.uk/Publications/Papers/2000689.pdf
  11. Girvan M., Newman M.G.M., Newman M.E.J. Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America. 2002. No. 99. Pp. 7821–7826. doi: 10.1073/pnas.122653799.
  12. Hamilton W.L., Ying R., Leskovec J. Representation learning on graphs: Methods and applications. 2017.
  13. Nikhil M., Carin L., Rai P. Stochastic block models meet graph neural networks. 2019.
  14. Pons P., Latapy M. Computing communities in large networks using random walks. J. Graph Algorithms Appl. 2006. No. 10. Pp. 191–218. doi: 10.7155/jgaa.00124.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Example of the simple graph

下载 (21KB)
3. Fig. 2. Graph retained from the networkx

下载 (250KB)
4. Fig. 3. Complete database

下载 (171KB)
5. Fig. 4. Node centrality graph

下载 (51KB)
6. Fig. 5. Identification of communities by the Girvan-Newman algorithm

下载 (236KB)
7. Fig. 6. Identification of communities by the Louvain algorithm

下载 (230KB)
8. Fig. 7. Identification of communities by the Leiden algorithm

下载 (233KB)
9. Fig. 8. Identification of communities by the Walktrap algorithm

下载 (227KB)
10. Algorithm quality metrics

下载 (542KB)
11. Fig. 9. Friedman rank test

下载 (48KB)
12. Fig. 10. Similarity matrix for random walk and Leiden algorithms

下载 (37KB)


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».