Study of Magnetic Field Generation in Chiral Copper Nanotubess

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The magnetic fields generated by chiral copper nanotubes are calculated. The number of ballistic transport channels, low-temperature electron currents, and magnetic fields in nanosolenoids based on copper nanotubes of various structures are determined. The results indicate that chiral nanotubes can be used to create nanosolenoids with desired characteristics.

About the authors

Dmitry O. Krasnov

Mendeleev University of Chemical Technology of Russia

Email: drygodo@gmail.com
expert at the Department of Operation of Automated Information Systems Moscow, Russian Federation

Eleonora M. Koltsova

Mendeleev University of Chemical Technology of Russia

Email: koltsova.e.m@muctr.ru
Dr. Sci. (Eng.), Professor; Head at the Department of Information Computer Technologies Moscow, Russian Federation

References

  1. Murphy C.J., Sau T.K., Gole A.M. Anisotropic metal nano-particles: Synthesis, assembly, and optical applications. Journal of Physical Chemistry B. 2005. Vol. 109. Pp. 13857-13870. URL: https://doi.org/10.1021/jp0516846
  2. Oshima Y., Onga A., Takayanagi K. Helical gold nanotube synthesized at 150 K. Physical Review Letters. 2003. Vol. 91. P. 205503. URL: https://doi.org/10.1103/PhysRevLett.91.205503
  3. Kharche N., Manjari S.R., Zhou Y. et al. A comparative study of quantum transport properties of silver and copper nanowires using first principles calculations. Journal of Physics: Condensed Matter. 2011. Vol. 23. P. 085501. URL: https://doi.org/10.1088/0953-8984/23/8/085501
  4. Kumar A., Kumar A., Ahluwalia P.K. Ab initio study of structural, electronic and dielectric properties of free standing ultrathin nanowires of noble metals. Physica E: Low-dimensional Systems and Nanostructures. 2012. Vol. 46. Pp. 259-269. URL: https://doi.org/10.1016/j.physe.2012.09.032
  5. Hsiao J.C., Fong K. Making big money from small technology. Nature. 2004. Vol. 428. Pp. 218-220. URL: https://doi.org/10.1038/428218a
  6. Lu W., Lieber C.M. Nanoelectronics from the bottom up. Nature Materials. 2007. Vol. 6. Pp. 841-850. URL: https://doi.org/10.1038/nmat2028
  7. Natelson D. Best of both worlds. Nature Materials. 2006. Vol. 5. Pp. 853-854. URL: https://doi.org/10.1038/nmat1769
  8. Landauer R. Electrical resistance of disordered one-dimensional lattices. Philosophical Magazine. 1970. Vol. 21. Pp. 863-867. URL: https://doi.org/10.1080/14786437008238472
  9. Zhang Z.Y., Miao C., Guo W. Nano-solenoid: Helicoid carbon-boron nitride hetero-nanotube. Nanoscale. 2013. Vol. 5. Pp. 11902-11909. URL: https://doi.org/10.1039/C3NR02914J
  10. James C.R., Long J.E., Manning D.E. Significant multi Tesla fields within a solenoid encircled by nanostructure windings. Scientific Reports. 2019. Vol. 9. Pp. 1-11. URL: https://doi.org/10.1038/s41598-018-38306-8
  11. Kaniukov E.Y., Kozlovsky A.L., Shlimas D.I. et al. Electrochemically deposited copper nanotubes. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2017. Vol. 11. Pp. 270-275. URL: https://doi.org/10.1134/S1027451017010281
  12. Venkata Kamalakar M., Raychaudhuri A.K. A novel method of synthesis of dense arrays of aligned single crystalline copper nanotubes using electrodeposition in the presence of a rotating electric field. Advanced Materials. 2008. Vol. 20. Pp. 149-154. URL: https://doi.org/10.1002/adma.200700430
  13. Kaniukov E.Y., Kozlovsky A.L., Shlimas D.I. et al. Tunable synthesis of copper nanotubes. IOP Conference Series: Materials Science and Engineering. - IOP Publishing. 2016. Vol. 110. P. 012013. URL: https://doi.org/10.1088/1757-899X/110/1/012013
  14. Krasnov D.O., Zhensa A.V., Koltsova E.M. Magnetic properties of chiral copper nanotubes. Nanotechnology and Nanomaterials. 2022. Vol. 9. No. 3. Pp. 68-72. URL: https://doi.org/10.33693/2313-223X-2022-9-3-68-72
  15. Zhang K., Zhang H. Plasmon coupling in gold nanotube assemblies: Insight from a time-dependent density functional theory (TDDFT) calculation. Journal of Physical Chemistry C. 2014. Vol. 118. No. 1. Pp. 635-641. URL: https://doi.org/10.1021/jp410056u
  16. Dyachkov P.N., Dyachkov E.P. Magnetic properties of chiral gold nanotubes.Russian Journal of Inorganic Chemistry. 2020. Vol. 65. Pp. 1196-1203. (In Rus.) URL: https://doi.org/10.1134/S0036023620070074
  17. Dyachkov P.N., Dyachkov E.P. Modeling of nanoscale electromagnets based on gold finite nanosolenoids. ACS Omega. 2020. Vol. 5. Pp. 5529-5533. URL: https://doi.org/10.1021/acsomega.0c00167
  18. Khoroshavin L.O., Krasnov D.O., Dyackov P.N. et al. Electronic properties of achiral and chiral gold nanotubes.Russian Journal of Inorganic Chemistry. 2017. Vol. 62, Pp. 783-789. URL: https://doi.org/10.1134/S0036023619010145
  19. Krasnov D.O., Khoroshavin L.O., Dyachkov P.N. Spin-orbit coupling in single-walled gold nanotubes.Russian Journal of Inorganic Chemistry. 2019. Vol. 64. Pp. 108-113. (In Rus.) URL: https://doi.org/10.1134/S0036023619010145

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».