Паракринные эффекты мезенхимальных клеток: перспективы развития

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Мезенхимальные стволовые клетки (МСК) представляют собой клеточную популяцию, способную к саморепликации и дифференцировке в различные типы соматических клеток. В обзоре рассмотрен потенциал культур МСК для клеточной терапии на основе трансплантируемых клеток или тканево-инженерных конструктов, а также секретируемых МСК паракринных факторов. Методологические аспекты применения описываемых клеток для лечения различных заболеваний в клинических и доклинических исследованиях продемонстрированы на примерах экспериментальной терапии с разбором их основных механизмов.

В качестве основы для клеточной терапии МСК вызывают значительный интерес из-за их доступности и возобновляемой природы. Несмотря на то, что пути дифференцировки МСК не до конца изучены, сами клетки играют ключевую роль в биологии стволовых клеток из-за их регуляторных свойств, включая иммуномодулирующие, антиапоптотические, пропролиферативные и антифибротические эффекты. Мы подчёркиваем, что в первую очередь именно паракринные возможности МСК обеспечивают преимущества их оптимальной интеграции в ткани по сравнению с индуцированными плюрипотентными стволовыми клетками, особенно в тканевой инженерии сердечной ткани. В обзоре также освещается влияние внешних факторов, таких как субстраты, на эффективность паракринного эффекта МСК с целью выявления оптимального клеточного микроокружения для улучшения терапевтических результатов без побочных эффектов.

Об авторах

Роз Алхатиб

Московский физико-технический институт (национальный исследовательский университет)

Email: rosskhati75@gmail.com
ORCID iD: 0009-0002-0533-8142
Россия, Долгопрудный

Елена Александровна Турчанинова

Московский физико-технический институт (национальный исследовательский университет)

Автор, ответственный за переписку.
Email: turchaninova.ea@phystech.edu
ORCID iD: 0009-0003-8165-2595
SPIN-код: 4964-2332
Россия, Долгопрудный

Дарья Викторовна Кононова

Московский физико-технический институт (национальный исследовательский университет)

Email: kononova.dv@phystech.edu
ORCID iD: 0009-0002-7631-2126
Россия, Долгопрудный

Софья Дмитриевна Робустова

Московский физико-технический институт (национальный исследовательский университет)

Email: robustova.sd@phystech.edu
ORCID iD: 0009-0004-5744-2325
SPIN-код: 7133-9288
Россия, Долгопрудный

Алерия Альбертовна Долгодворова

Московский физико-технический институт (национальный исследовательский университет)

Email: aitova.aa@phystech.edu
ORCID iD: 0000-0003-2460-088X
Россия, Долгопрудный

Валерия Александровна Цвелая

Московский физико-технический институт (национальный исследовательский университет); Московский областной научно-исследовательский клинический институт имени М.Ф. Владимирского; Национальный исследовательский университет ИТМО

Email: vts93@yandex.ru
ORCID iD: 0000-0002-3554-9736
SPIN-код: 7553-1038

канд. биол. наук

Россия, Долгопрудный; Москва; Санкт-Петербург

Константин Игоревич Агладзе

Московский физико-технический институт (национальный исследовательский университет); Московский областной научно-исследовательский клинический институт имени М.Ф. Владимирского

Email: agladze@yahoo.com
ORCID iD: 0000-0002-9258-436X
SPIN-код: 6960-8351

д-р биол. наук

Россия, Долгопрудный; Москва

Список литературы

  1. Вoss MX, Sachinidis A. Current challenges of iPSC-based disease modeling and therapeutic implications. Cells. 2019;8(5):403. doi: 10.3390/cells8050403 EDN: GHLGRP
  2. Qiao Y, Agboola OS, Hu X, et al. Tumorigenic and immunogenic properties of induced pluripotent stem cells: a promising cancer vaccine. Stem Cell Rev Rep. 2020;16(6):1049–1061. doi: 10.1007/s12015-020-10042-5 EDN: MRNWJG
  3. Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970;3(4):393–403. doi: 10.1111/j.1365-2184.1970.tb00347.x EDN: KTFJMT
  4. Friedenstein AJ. Osteogenic stem cells in bone marrow. In: Heersche JNM, Kanis JA, editors. Bone and mineral research. The Netherlands: Elsevier Science Publishers; 1990. P. 243–272.
  5. Haynesworth SE, Goshima J, Goldberg VM, Caplan AI. Characterization of cells with osteogenic potential from human marrow. Bone. 1992;13(1):81–88. doi: 10.1016/8756-3282(92)90364-3
  6. Li P, Ou Q, Shi S, Shao C. Immunomodulatory properties of mesenchymal stem cells/dental stem cells and their therapeutic applications. Cell Mol Immunol. 2023;20(6):558–569. doi: 10.1038/s41423-023-00998-y EDN: YDSXDI
  7. Taechangam N, Kol A, Arzi B, Borjesson DL. Multipotent stromal cells and viral interaction: current implications for therapy. Stem Cell Rev Rep. 2022;18(1):214–227. doi: 10.1007/s12015-021-10224-9 EDN: XSVUFE
  8. Stanko P, Kaiserova K, Altanerova V, Altaner C. Comparison of human mesenchymal stem cells derived from dental pulp, bone marrow, adipose tissue, and umbilical cord tissue by gene expression. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2014;158(3):373–377. doi: 10.5507/bp.2013.078
  9. Bianco P, Robey PG, Simmons PJ. Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell. 2008;2(4):313–319. doi: 10.1016/j.stem.2008.03.002 EDN: XVWRXL
  10. Pittenger MF, Discher DE, Péault BM, et al. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med. 2019;4:22. doi: 10.1038/s41536-019-0083-6 EDN: MXZCWM
  11. Kadri N, Amu S, Iacobaeus E, et al. Current perspectives on mesenchymal stromal cell therapy for graft versus host disease. Cell Mol Immunol. 2023;20(6):613–625. doi: 10.1038/s41423-023-01022-z EDN: GZIPBT
  12. Weatherall EL, Avilkina V, Cortes-Araya Y, et al. Differentiation potential of mesenchymal stem/stromal cells is altered by intrauterine growth restriction. Front Vet Sci. 2020;7:558905. doi: 10.3389/fvets.2020.558905 EDN: SEUBAE
  13. Kariminekoo S, Movassaghpour A, Rahimzadeh A, et al. Implications of mesenchymal stem cells in regenerative medicine. Artif Cells Nanomed Biotechnol. 2016;44(3):749–757. doi: 10.3109/21691401.2015.1129620
  14. Liang X, Ding Y, Zhang Y, et al. Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives. Cell Transplant. 2014;23(9):1045–1059. doi: 10.3727/096368913X667709 EDN: UQXCMB
  15. Li TT, Wang ZR, Yao WQ, et al. Stem cell therapies for chronic liver diseases: progress and challenges. Stem Cells Transl Med. 2022;11(9):900–911. doi: 10.1093/stcltm/szac053 EDN: SILAUU
  16. Tan CY, Lai RC, Wong W, et al. Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res Ther. 2014;5(3):76. doi: 10.1186/scrt465 EDN: TLHBKA
  17. El-Ansary M, Abdel-Aziz I, Mogawer S, et al. Phase II trial: undifferentiated versus differentiated autologous mesenchymal stem cells transplantation in Egyptian patients with HCV induced liver cirrhosis. Stem Cell Rev Rep. 2012;8(3):972–981. doi: 10.1007/s12015-011-9322-y EDN: IFMKKR
  18. Margiana R, Markov A, Zekiy AO, et al. Clinical application of mesenchymal stem cell in regenerative medicine: a narrative review. Stem Cell Res Ther. 2022;13(1):366. doi: 10.1186/s13287-022-03054-0 EDN: IJSYMG
  19. Suk KT, Yoon JH, Kim MY, et al. Transplantation with autologous bone marrow-derived mesenchymal stem cells for alcoholic cirrhosis: Phase 2 trial. Hepatology. 2016;64(6):2185–2197. doi: 10.1002/hep.28693
  20. Eom YW, Shim KY, Baik SK. Mesenchymal stem cell therapy for liver fibrosis. Korean J Intern Med. 2015;30(5):580–589. doi: 10.3904/kjim.2015.30.5.580 EDN: XTQDOJ
  21. Usunier B, Benderitter M, Tamarat R, Chapel A. Management of fibrosis: the mesenchymal stromal cells breakthrough. Stem Cells Int. 2014;2014:340257. doi: 10.1155/2014/340257
  22. Ikegame Y, Yamashita K, Hayashi S, et al. Comparison of mesenchymal stem cells from adipose tissue and bone marrow for ischemic stroke therapy. Cytotherapy. 2011;13(6):675–685. doi: 10.3109/14653249.2010.549122
  23. Dabrowski FA, Burdzinska A, Kulesza A, et al. Comparison of the paracrine activity of mesenchymal stem cells derived from human umbilical cord, amniotic membrane and adipose tissue. J Obstet Gynaecol Res. 2017;43(11):1758–1768. doi: 10.1111/jog.13432
  24. Han Y, Li X, Zhang Y, et al. Mesenchymal stem cells for regenerative medicine. Cells. 2019;8(8):886. doi: 10.3390/cells8080886 EDN: BJUVFT
  25. Lim HC, Park YB, Ha CW, et al. Allogeneic umbilical cord blood-derived mesenchymal stem cell implantation versus microfracture for large, full-thickness cartilage defects in older patients: a multicenter randomized clinical trial and extended 5-year clinical follow-up. Orthop J Sports Med. 2021;9(1):2325967120973052. doi: 10.1177/2325967120973052 EDN: YINEWF
  26. Katagiri W, Watanabe J, Toyama N, et al. Clinical study of bone regeneration by conditioned medium from mesenchymal stem cells after maxillary sinus floor elevation. Implant Dent. 2017;26(4):607–612. doi: 10.1097/ID.0000000000000618
  27. Jovic D, Yu Y, Wang D, et al. A brief overview of global trends in MSC-based cell therapy. Stem Cell Rev Rep. 2022;18(5):1525–1545. doi: 10.1007/s12015-022-10369-1 EDN: RFJIWE
  28. Petrou P, Gothelf Y, Argov Z, et al. Safety and clinical effects of mesenchymal stem cells secreting neurotrophic factor transplantation in patients with amyotrophic lateral sclerosis: results of phase 1/2 and 2a clinical trials. JAMA Neurol. 2016;73(3):337–344. doi: 10.1001/jamaneurol.2015.4321
  29. Jung JW, Kwon M, Choi JC, et al. Familial occurrence of pulmonary embolism after intravenous, adipose tissue-derived stem cell therapy. Yonsei Med J. 2013;54(5):1293–1296. doi: 10.3349/ymj.2013.54.5.1293
  30. Lim JY, Jeong CH, Jun JA, et al. Therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells after intrathecal administration by lumbar puncture in a rat model of cerebral ischemia. Stem Cell Res Ther. 2011;2(5):38. doi: 10.1186/scrt79 EDN: SDUJNG
  31. Chen SL, Fang WW, Qian J, et al. Improvement of cardiac function after transplantation of autologous bone marrow mesenchymal stem cells in patients with acute myocardial infarction. Chin Med J (Engl). 2004;117(10):1443–1448. Erratum in: Chin Med J (Engl). 2005 Jan 5;118(1):88.
  32. Rigol M, Solanes N, Roura S, et al. Allogeneic adipose stem cell therapy in acute myocardial infarction. Eur J Clin Invest. 2014;44(1):83–92. doi: 10.1111/eci.12195
  33. Toma C, Pittenger MF, Cahill KS, et al. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation. 2002;105(1):93–98. doi: 10.1161/hc0102.101442
  34. Sid-Otmane C, Perrault LP, Ly HQ. Mesenchymal stem cell mediates cardiac repair through autocrine, paracrine and endocrine axes. J Transl Med. 2020;18(1):336. doi: 10.1186/s12967-020-02504-8 EDN: NGPOPB
  35. Teng X, Chen L, Chen W, et al. Mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-inflammation. Cell Physiol Biochem. 2015;37(6):2415–2424. doi: 10.1159/000438594
  36. Feng Y, Huang W, Wani M, et al. Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS One. 2014;9(2):e88685. doi: 10.1371/journal.pone.0088685
  37. Perin EC, Sanz-Ruiz R, Sánchez PL, et al. Adipose-derived regenerative cells in patients with ischemic cardiomyopathy: The PRECISE Trial. Am Heart J. 2014;168(1):88–95.e2. doi: 10.1016/j.ahj.2014.03.022 EDN: USQEZB
  38. Swaminathan M, Kopyt N, Atta MG, et al. Pharmacological effects of ex vivo mesenchymal stem cell immunotherapy in patients with acute kidney injury and underlying systemic inflammation. Stem Cells Transl Med. 2021;10(12):1588–1601. doi: 10.1002/sctm.21-0043 EDN: GXFJZQ
  39. Fernández-Garza LE, Barrera-Barrera SA, Barrera-Saldaña HA. Mesenchymal stem cell therapies approved by regulatory agencies around the world. Pharmaceuticals (Basel). 2023;16(9):1334. doi: 10.3390/ph16091334 EDN: KNPGXA
  40. Horwitz EM, Gordon PL, Koo WK, et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci U S A. 2002;99(13):8932–8937. doi: 10.1073/pnas.132252399
  41. Koh RH, Jin Y, Kang BJ, Hwang NS. Chondrogenically primed tonsil-derived mesenchymal stem cells encapsulated in riboflavin-induced photocrosslinking collagen-hyaluronic acid hydrogel for meniscus tissue repairs. Acta Biomater. 2017;53:318–328. doi: 10.1016/j.actbio.2017.01.081
  42. Kim HJ, Seo SW, Chang JW, et al. Stereotactic brain injection of human umbilical cord blood mesenchymal stem cells in patients with Alzheimer’s disease dementia: A phase 1 clinical trial. Alzheimers Dement (N Y). 2015;1(2):95–102. doi: 10.1016/j.trci.2015.06.007
  43. Sun Z, Gu P, Xu H, et al. Human umbilical cord mesenchymal stem cells improve locomotor function in Parkinson’s disease mouse model through regulating intestinal microorganisms. Front Cell Dev Biol. 2022;9:808905. doi: 10.3389/fcell.2021.808905 EDN: UJHVAT
  44. Yu-Taeger L, Stricker-Shaver J, Arnold K, et al. Intranasal administration of mesenchymal stem cells ameliorates the abnormal dopamine transmission system and inflammatory reaction in the R6/2 mouse model of Huntington disease. Cells. 2019;8(6):595. doi: 10.3390/cells8060595 EDN: FNTLIS
  45. Masgutov R, Masgutova G, Mullakhmetova A, et al. Adipose-derived mesenchymal stem cells applied in fibrin glue stimulate peripheral nerve regeneration. Front Med (Lausanne). 2019;6:68. doi: 10.3389/fmed.2019.00068 EDN: RMRCKJ
  46. Zheng S, Yang J, Yang J, et al. Transplantation of umbilical cord mesenchymal stem cells via different routes in rats with acute liver failure. Int J Clin Exp Pathol. 2015;8(12):15854–15862.
  47. Zhao W, Li JJ, Cao DY, et al. Intravenous injection of mesenchymal stem cells is effective in treating liver fibrosis. World J Gastroenterol. 2012;18(10):1048–1058. doi: 10.3748/wjg.v18.i10.1048
  48. Peng L, Xie DY, Lin BL, et al. Autologous bone marrow mesenchymal stem cell transplantation in liver failure patients caused by hepatitis B: short-term and long-term outcomes. Hepatology. 2011;54(3):820–828. doi: 10.1002/hep.24434
  49. Gnecchi M, He H, Liang OD, et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med. 2005;11(4):367–368. doi: 10.1038/nm0405-367
  50. Hatzistergos KE, Quevedo H, Oskouei BN, et al. Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circ Res. 2010;107(7):913–922. doi: 10.1161/CIRCRESAHA.110.222703 EDN: NZOJRL
  51. Guo J, Zheng D, Li WF, et al. Insulin-like growth factor 1 treatment of MSCs attenuates inflammation and cardiac dysfunction following MI. Inflammation. 2014;37(6):2156–2163. doi: 10.1007/s10753-014-9949-3 EDN: ZRLFLU
  52. Psaltis PJ, Zannettino AC, Worthley SG, Gronthos S. Concise review: mesenchymal stromal cells: potential for cardiovascular repair. Stem Cells. 2008;26(9):2201–2210. doi: 10.1634/stemcells.2008-0428
  53. Chang D, Fan T, Gao S, et al. Application of mesenchymal stem cell sheet to treatment of ischemic heart disease. Stem Cell Res Ther. 2021;12(1):384. doi: 10.1186/s13287-021-02451-1 EDN: IIIZDL
  54. Angoulvant D, Ivanes F, Ferrera R, et al. Mesenchymal stem cell conditioned media attenuates in vitro and ex vivo myocardial reperfusion injury. J Heart Lung Transplant. 2011;30(1):95–102. doi: 10.1016/j.healun.2010.08.023
  55. Mias C, Lairez O, Trouche E, et al. Mesenchymal stem cells promote matrix metalloproteinase secretion by cardiac fibroblasts and reduce cardiac ventricular fibrosis after myocardial infarction. Stem Cells. 2009;27(11):2734–2743. doi: 10.1002/stem.169
  56. Li L, Zhang Y, Li Y, et al. Mesenchymal stem cell transplantation attenuates cardiac fibrosis associated with isoproterenol-induced global heart failure. Transpl Int. 2008;21(12):1181–1189. doi: 10.1111/j.1432-2277.2008.00742.x
  57. Chen ZY, Hu YY, Hu XF, Cheng LX. The conditioned medium of human mesenchymal stromal cells reduces irradiation-induced damage in cardiac fibroblast cells. J Radiat Res. 2018;59(5):555–564. doi: 10.1093/jrr/rry048
  58. Daltro PS, Barreto BC, Silva PG, et al. Therapy with mesenchymal stromal cells or conditioned medium reverse cardiac alterations in a high-fat diet-induced obesity model. Cytotherapy. 2017;19(10):1176–1188. doi: 10.1016/j.jcyt.2017.07.002
  59. White SJ, Chong JJH. Mesenchymal stem cells in cardiac repair: effects on myocytes, vasculature, and fibroblasts. Clin Ther. 2020;42(10):1880–1891. doi: 10.1016/j.clinthera.2020.08.010 EDN: TDUVIV
  60. Han Y, Yang J, Fang J, et al. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct Target Ther. 2022;7(1):92. doi: 10.1038/s41392-022-00932-0 EDN: DHCYUG
  61. Lai RC, Arslan F, Lee MM, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 2010;4(3):214–222. doi: 10.1016/j.scr.2009.12.003
  62. Murphy MB, Moncivais K, Caplan AI. Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med. 2013;45(11):e54. doi: 10.1038/emm.2013.94 EDN: WOIYXD
  63. Qazi TH, Mooney DJ, Duda GN, Geissler S. Biomaterials that promote cell-cell interactions enhance the paracrine function of MSCs. Biomaterials. 2017;140:103–114. doi: 10.1016/j.biomaterials.2017.06.019 EDN: YFTYHU
  64. Drzeniek NM, Mazzocchi A, Schlickeiser S, et al. Bio-instructive hydrogel expands the paracrine potency of mesenchymal stem cells. Biofabrication. 2021;13(4):10.1088/1758-5090/ac0a32. doi: 10.1088/1758-5090/ac0a32 EDN: OKHHWW
  65. Kadir ND, Yang Z, Hassan A, et al. Electrospun fibers enhanced the paracrine signaling of mesenchymal stem cells for cartilage regeneration. Stem Cell Res Ther. 2021;12(1):100. doi: 10.1186/s13287-021-02137-8 EDN: APTUEV
  66. Li J, Liu Y, Zhang Y, et al. Biophysical and biochemical cues of biomaterials guide mesenchymal stem cell behaviors. Front Cell Dev Biol. 2021;9:640388. doi: 10.3389/fcell.2021.640388 EDN: RXCGWS
  67. Martín-Saavedra F, Crespo L, Escudero-Duch C, et al. Substrate microarchitecture shapes the paracrine crosstalk of stem cells with endothelial cells and osteoblasts. Sci Rep. 2017;7(1):15182. doi: 10.1038/s41598-017-15036-x EDN: BJBXGN
  68. Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003;24(24):4337–4351. doi: 10.1016/s0142-9612(03)00340-5 EDN: EJYHWL
  69. Cai L, Dewi RE, Goldstone AB, et al. Regulating stem cell secretome using injectable hydrogels with in situ network formation. Adv Healthc Mater. 2016;5(21):2758–2764. doi: 10.1002/adhm.201600497
  70. Martinac B, Cox CD. Mechanosensory transduction: focus on ion channels. In: Reference module in life sciences. Amsterdam: Elsevier, 2017. P. 9780128096338082000. doi: 10.1016/B978-0-12-809633-8.08094-8
  71. Su N, Gao PL, Wang K, et al. Fibrous scaffolds potentiate the paracrine function of mesenchymal stem cells: A new dimension in cell-material interaction. Biomaterials. 2017;141:74–85. doi: 10.1016/j.biomaterials.2017.06.028
  72. Li T, Ma H, Ma H, et al. Mussel-inspired nanostructures potentiate the immunomodulatory properties and angiogenesis of mesenchymal stem cells. ACS Appl Mater Interfaces. 2019;11(19):17134–17146. doi: 10.1021/acsami.8b22017
  73. Shen J, Li S, Chen D. TGF-β signaling and the development of osteoarthritis. Bone Res. 2014;2:14002-. doi: 10.1038/boneres.2014.2
  74. Ball SG, Shuttleworth AC, Kielty CM. Direct cell contact influences bone marrow mesenchymal stem cell fate. Int J Biochem Cell Biol. 2004;36(4):714–727. doi: 10.1016/j.biocel.2003.10.015
  75. Saleh FA, Whyte M, Ashton P, Genever PG. Regulation of mesenchymal stem cell activity by endothelial cells. Stem Cells Dev. 2011;20(3):391–403. doi: 10.1089/scd.2010.0168
  76. Rangappa S, Entwistle JW, Wechsler AS, Kresh JY. Cardiomyocyte-mediated contact programs human mesenchymal stem cells to express cardiogenic phenotype. J Thorac Cardiovasc Surg. 2003;126(1):124–132. doi: 10.1016/s0022-5223(03)00074-6
  77. Slotvitsky M, Berezhnoy A, Scherbina S, et al. Polymer kernels as compact carriers for suspended cardiomyocytes. Micromachines (Basel). 2022;14(1):51. doi: 10.3390/mi14010051 EDN: NRFBIT
  78. Aitova A, Scherbina S, Berezhnoy A, et al. Novel molecular vehicle-based approach for cardiac cell transplantation leads to rapid electromechanical graft-host coupling. Int J Mol Sci. 2023;24(12):10406. doi: 10.3390/ijms241210406 EDN: MMQIBG
  79. Liu Z, Tang Y, Lü S, et al. The tumourigenicity of iPS cells and their differentiated derivates. J Cell Mol Med. 2013;17(6):782–791. doi: 10.1111/jcmm.12062
  80. Gutierrez-Aranda I, Ramos-Mejia V, Bueno C, et al. Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells. 2010;28(9):1568–1570. doi: 10.1002/stem.471
  81. Mojsilović S, Jauković A, Kukolj T, et al. Tumorigenic aspects of MSC senescence-implication in cancer development and therapy. J Pers Med. 2021;11(11):1133. doi: 10.3390/jpm11111133 EDN: JEOIWV
  82. Masumoto H, Ikuno T, Takeda M, et al. Human iPS cell-engineered cardiac tissue sheets with cardiomyocytes and vascular cells for cardiac regeneration. Sci Rep. 2014;4:6716. doi: 10.1038/srep06716
  83. Masumoto H, Nakane T, Tinney JP, et al. The myocardial regenerative potential of three-dimensional engineered cardiac tissues composed of multiple human iPS cell-derived cardiovascular cell lineages. Sci Rep. 2016;6:29933. doi: 10.1038/srep29933 EDN: XZETPX
  84. Szepes M, Melchert A, Dahlmann J, et al. Dual function of iPSC-derived pericyte-like cells in vascularization and fibrosis-related cardiac tissue remodeling in vitro. Int J Mol Sci. 2020;21(23):8947. doi: 10.3390/ijms21238947 EDN: PEBYDK
  85. Abulaiti M, Yalikun Y, Murata K, et al. Establishment of a heart-on-a-chip microdevice based on human iPS cells for the evaluation of human heart tissue function. Sci Rep. 2020;10(1):19201. doi: 10.1038/s41598-020-76062-w EDN: SERBNZ
  86. Sequiera GL, Srivastava A, Sareen N, et al. Development of iPSC-based clinical trial selection platform for patients with ultrarare diseases. Sci Adv. 2022;8(14):eabl4370. doi: 10.1126/sciadv.abl4370 EDN: BJRNGS
  87. Mandai M, Watanabe A, Kurimoto Y, et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med. 2017;376(11):1038–1046. doi: 10.1056/NEJMoa1608368
  88. Takahashi J. iPS cell-based therapy for Parkinson’s disease: A Kyoto trial. Regen Ther. 2020;13:18–22. doi: 10.1016/j.reth.2020.06.002 EDN: WYNLUC
  89. Slotvitsky M, Tsvelaya V, Frolova S, et al. Arrhythmogenicity test based on a human-induced pluripotent stem cell (iPSC)-derived cardiomyocyte layer. Toxicol Sci. 2019;168(1):70–77. doi: 10.1093/toxsci/kfy274 EDN: QDKOBG
  90. Podgurskaya AD, Slotvitsky MM, Tsvelaya VA, et al. Cyclophosphamide arrhythmogenicitytesting using human-induced pluripotent stem cell-derived cardiomyocytes. Sci Rep. 2021;11(1):2336. doi: 10.1038/s41598-020-79085-5 EDN: LBJXSY
  91. Thanaskody K, Jusop AS, Tye GJ, et al. MSCs vs. iPSCs: Potential in therapeutic applications. Front Cell Dev Biol. 2022;10:1005926. doi: 10.3389/fcell.2022.1005926 EDN: YKXQEM
  92. Barkholt L, Flory E, Jekerle V, et al. Risk of tumorigenicity in mesenchymal stromal cell-based therapies — bridging scientific observations and regulatory viewpoints. Cytotherapy. 2013;15(7):753–759. doi: 10.1016/j.jcyt.2013.03.005 EDN: RJDTSN
  93. Karpov AA, Udalova DV, Pliss MG, Galagudza MM. Can the outcomes of mesenchymal stem cell-based therapy for myocardial infarction be improved? Providing weapons and armour to cells. Cell Prolif. 2017;50(2):e12316. doi: 10.1111/cpr.12316 EDN: YUTTXJ
  94. Moy AB, Kamath A, Ternes S, Kamath J. The challenges to advancing induced pluripotent stem cell-dependent cell replacement therapy. Med Res Arch. 2023;11(11):4784. doi: 10.18103/mra.v11i11.4784 EDN: ANLJXY
  95. Smolinská V, Boháč M, Danišovič Ľ. Current status of the applications of conditioned media derived from mesenchymal stem cells for regenerative medicine. Physiol Res. 2023;72(S3):S233–S245. doi: 10.33549/physiolres.935186 EDN: OIXEHU
  96. Méndez-Ferrer S, Michurina TV, Ferraro F, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466(7308):829–834. doi: 10.1038/nature09262
  97. Anderson JD, Johansson HJ, Graham CS, et al. Comprehensive proteomic analysis of mesenchymal stem cell exosomes reveals modulation of angiogenesis via nuclear factor-kappa B signaling. Stem Cells. 2016;34(3):601–613. doi: 10.1002/stem.2298
  98. Menasché P, Vanneaux V, Hagège A, et al. Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report. Eur Heart J. 2015;36(30):2011–2017. doi: 10.1093/eurheartj/ehv189
  99. Matta A, Nader V, Lebrin M, et al. Pre-conditioning methods and novel approaches with mesenchymal stem cells therapy in cardiovascular disease. Cells. 2022;11(10):1620. doi: 10.3390/cells11101620 EDN: ZDMTKC
  100. Beohar N, Rapp J, Pandya S, Losordo DW. Rebuilding the damaged heart: the potential of cytokines and growth factors in the treatment of ischemic heart disease. J Am Coll Cardiol. 2010;56(16):1287–1297. doi: 10.1016/j.jacc.2010.05.039
  101. Le Blanc K, Tammik C, Rosendahl K, et al. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol. 2003;31(10):890–896. doi: 10.1016/s0301-472x(03)00110-3
  102. Psaltis PJ, Simari RD. Vascular wall progenitor cells in health and disease. Circ Res. 2015;116(8):1392–1412. doi: 10.1161/CIRCRESAHA.116.305368 EDN: VGAWDR
  103. Lee CS, Bishop ES, Zhang R, et al. Adenovirus-mediated gene delivery: potential applications for gene and cell-based therapies in the new era of personalized medicine. Genes Dis. 2017;4(2):43–63. doi: 10.1016/j.gendis.2017.04.001
  104. Yang YK, Ogando CR, Wang See C, et al. Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Res Ther. 2018;9(1):131. doi: 10.1186/s13287-018-0876-3 EDN: YGTMQX
  105. Madeira A, da Silva CL, dos Santos F, et al. Human mesenchymal stem cell expression program upon extended ex-vivo cultivation, as revealed by 2-DE-based quantitative proteomics. PLoS One. 2012;7(8):e43523. doi: 10.1371/journal.pone.0043523

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Источники мезенхимальных стволовых клеток и многообразие секретируемых этими клетками факторов. PGE2 — простагландин E2, prostaglandin E2; IL — интерлейкин, interleukin; IDO — индоламин-2,3-диоксигеназа, indoleamine 2,3-dioxygenase; TGF-β — трансформирующий фактор роста бета, transforming growth factor-beta; VEGF — фактор роста эндотелия сосудов, vascular endothelial growth factor; PD-L2 — лиганд 2 программируемой клеточной смерти, programmed cell death ligand 2; TNF-α — фактор некроза опухоли альфа, tumor necrosis factor α; IFN-γ — интерферон гамма, interferon gamma; FGF — фактор роста фибробластов, fibroblast growth factor; HepGF — гепацитарный фактор роста, hepatocyte growth factor; Bcl-2 — апоптотический регулятор Bcl-2, apoptosis regulator Bcl-2; STC1 — станниокальцин-1, stanniocalcin-1; NO — оксид азота, nitrous oxide; HO-1 — гем-оксигеназа 1, heme oxygenase-1.

Скачать (290KB)
3. Рис. 2. Различные способы усиления паракринного эффекта мезенхимальных стволовых клеток с помощью тканевой инженерии.

Скачать (334KB)
4. Рис. 3. Преимущества и недостатки использования мезенхимальных стволовых клеток в клинической терапии сердечно-сосудистых заболеваний.

Скачать (226KB)

© Эко-Вектор, 2025

Ссылка на описание лицензии: https://eco-vector.com/for_authors.php#07

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».