Effects of transcranial magnetic stimulation on cortical structures during motor imagination performance in the brain-computer interface

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The aftermath of a stroke can frequently result in impaired motor functions causing problems performing habitual limb movements. These movement disorders stem from damage to the cerebral cortex and disruptions to neuronal connections in the central pyramidal pathways [1]. Restoring motor skills following a stroke is a time-consuming and challenging process, requiring resources from both external medical sources and the patient. Despite these challenges, it is still feasible for patients to regain control over their limb movements. The common approach for stroke neurorehabilitation consists of therapeutic physical activities and kinesiotherapy. These methods rely on afferent information during motor tasks to repair connections between intact brain areas [2]. Through exercising the impacted limbs, synaptic rearrangement happens in the cortex, awakening dormant neurons and increasing cortical areas adjacent to inactive regions. Although these techniques can partially restore movement, a significant number of stroke patients still face impairments. It is crucial to acknowledge the limitations of the current interventions and explore new approaches for better outcomes. Traditional rehabilitation methods often do not fully restore movement control, prompting researchers to explore alternative approaches. Motor-imagery-based brain-computer interfaces (BCIs) have gained attention recently [3, 4]. They allow for integrating various feedback mechanisms, which can be combined with upper and lower limb exoskeletons. The level of control a subject has over a BCI system directly affects the recovery process [5]. Introducing transcranial magnetic stimulation (TMS) into motor-imagery BCIs shows promise for developing a unified and highly efficient approach to post-stroke rehabilitation.

Twenty-nine healthy adult participants (21 females) with a mean age of 20.93±2.14 years were recruited for this experiment. All participants were right-handed and had no prior experience with brain-computer interfaces. Ethical approval was obtained from the local ethics committee of Lobachevsky State University of Nizhny Novgorod (ethical approval No. 2, dated 03/19/2021), and written informed consent was obtained from all participants. Subjects were randomly assigned to receive either a sham intervention (n=15) or active TMS (n=14). The experiment displayed tasks on a 24-inch LCD screen placed 2 meters away. Participants sat in a reclining chair with hands on adjustable armrests for EEG signal recording. Motor-imagery-based BCI training took place over two days with four daily tasks: motor performance, quasi-motor, and two motor imaginations of the dominant hand. EEG activity was recorded prior to and after completing the tasks. Each task comprised of 20 trials, each lasting 10 seconds. TMS was administered in between two motor imagination tasks, and a rest period of 2 minutes followed the stimulation. The researcher objectively monitored electromyography (EMG) in real-time during motor tasks. Certified NVX 52 amplifiers with 32 Cl/Ag electrodes positioned according to the international 10-10 system recorded electroencephalography (EEG) signals. The EEG was digitized at a sampling rate of 1000 Hz and filtered with a 50 Hz Notch filter. Disposable electrodes were used to record EMG data from musculus flexor digitorum superficialis on the right hand. EMG signals were digitized at 1000 Hz and filtered using a 50 Hz Notch filter. TMS was applied to the dorsolateral prefrontal cortex (dlPFC) using a figure-8 coil connected to a Neuro MS/D magnetic stimulator. Sham stimulation was performed with the same parameters, except the coil was tilted 90 degrees to simulate the sound of real stimulation. A nonparametric permutation test was conducted to assess the statistically significant dissimilarities between rest periods and periods subsequent to conducting motor imagery after TMS. Significant clusters of the highest event-related desynchronization (ERD) were observed. The analysis demonstrated a significant negative cluster in the theta rhythm (0–6 Hz) that was distinct from the magnetic stimulation site. Similar significant ERD clusters were identified during the first and second series of imaginary movements.

The study examined alterations in motor cortex function following targeted rTMS. The results demonstrated that TMS using particular parameters resulted in the pre-activation of brain regions comparable to those stimulated during motor imagery. The implementation of this stimulation protocol increased activity in cortical regions related to motor imagery. The outcomes propose the probable effectiveness of TMS in elevating motor cortex activation during the rehabilitation process.

Толық мәтін

The aftermath of a stroke can frequently result in impaired motor functions causing problems performing habitual limb movements. These movement disorders stem from damage to the cerebral cortex and disruptions to neuronal connections in the central pyramidal pathways [1]. Restoring motor skills following a stroke is a time-consuming and challenging process, requiring resources from both external medical sources and the patient. Despite these challenges, it is still feasible for patients to regain control over their limb movements. The common approach for stroke neurorehabilitation consists of therapeutic physical activities and kinesiotherapy. These methods rely on afferent information during motor tasks to repair connections between intact brain areas [2]. Through exercising the impacted limbs, synaptic rearrangement happens in the cortex, awakening dormant neurons and increasing cortical areas adjacent to inactive regions. Although these techniques can partially restore movement, a significant number of stroke patients still face impairments. It is crucial to acknowledge the limitations of the current interventions and explore new approaches for better outcomes. Traditional rehabilitation methods often do not fully restore movement control, prompting researchers to explore alternative approaches. Motor-imagery-based brain-computer interfaces (BCIs) have gained attention recently [3, 4]. They allow for integrating various feedback mechanisms, which can be combined with upper and lower limb exoskeletons. The level of control a subject has over a BCI system directly affects the recovery process [5]. Introducing transcranial magnetic stimulation (TMS) into motor-imagery BCIs shows promise for developing a unified and highly efficient approach to post-stroke rehabilitation.

Twenty-nine healthy adult participants (21 females) with a mean age of 20.93±2.14 years were recruited for this experiment. All participants were right-handed and had no prior experience with brain-computer interfaces. Ethical approval was obtained from the local ethics committee of Lobachevsky State University of Nizhny Novgorod (ethical approval No. 2, dated 03/19/2021), and written informed consent was obtained from all participants. Subjects were randomly assigned to receive either a sham intervention (n=15) or active TMS (n=14). The experiment displayed tasks on a 24-inch LCD screen placed 2 meters away. Participants sat in a reclining chair with hands on adjustable armrests for EEG signal recording. Motor-imagery-based BCI training took place over two days with four daily tasks: motor performance, quasi-motor, and two motor imaginations of the dominant hand. EEG activity was recorded prior to and after completing the tasks. Each task comprised of 20 trials, each lasting 10 seconds. TMS was administered in between two motor imagination tasks, and a rest period of 2 minutes followed the stimulation. The researcher objectively monitored electromyography (EMG) in real-time during motor tasks. Certified NVX 52 amplifiers with 32 Cl/Ag electrodes positioned according to the international 10-10 system recorded electroencephalography (EEG) signals. The EEG was digitized at a sampling rate of 1000 Hz and filtered with a 50 Hz Notch filter. Disposable electrodes were used to record EMG data from musculus flexor digitorum superficialis on the right hand. EMG signals were digitized at 1000 Hz and filtered using a 50 Hz Notch filter. TMS was applied to the dorsolateral prefrontal cortex (dlPFC) using a figure-8 coil connected to a Neuro MS/D magnetic stimulator. Sham stimulation was performed with the same parameters, except the coil was tilted 90 degrees to simulate the sound of real stimulation. A nonparametric permutation test was conducted to assess the statistically significant dissimilarities between rest periods and periods subsequent to conducting motor imagery after TMS. Significant clusters of the highest event-related desynchronization (ERD) were observed. The analysis demonstrated a significant negative cluster in the theta rhythm (0–6 Hz) that was distinct from the magnetic stimulation site. Similar significant ERD clusters were identified during the first and second series of imaginary movements.

The study examined alterations in motor cortex function following targeted rTMS. The results demonstrated that TMS using particular parameters resulted in the pre-activation of brain regions comparable to those stimulated during motor imagery. The implementation of this stimulation protocol increased activity in cortical regions related to motor imagery. The outcomes propose the probable effectiveness of TMS in elevating motor cortex activation during the rehabilitation process.

ADDITIONAL INFORMATION

Funding sources. The work was supported by the Russian Science Foundation under Grant No. 21-72-10121. A. Savosenkov, N. Grigorev and S. Gordleeva received support from the Federal Academic Leadership Program “Priority 2030” of the Ministry of Science and Higher Education of the Russian Federation in part of data collection.

×

Авторлар туралы

A. Savosenkov

Lobachevsky State University of Nizhny Novgorod; Immanuel Kant Baltic Federal University

Хат алмасуға жауапты Автор.
Email: Andrey.savosenkov@gmail.com
Ресей, Nizhny Novgorod; Kaliningrad

N. Grigorev

Lobachevsky State University of Nizhny Novgorod; Immanuel Kant Baltic Federal University

Email: Andrey.savosenkov@gmail.com
Ресей, Nizhny Novgorod; Kaliningrad

A. Udoratina

Lobachevsky State University of Nizhny Novgorod

Email: Andrey.savosenkov@gmail.com
Ресей, Nizhny Novgorod

S. Kurkin

Immanuel Kant Baltic Federal University

Email: Andrey.savosenkov@gmail.com
Ресей, Kaliningrad

S. Gordleeva

Lobachevsky State University of Nizhny Novgorod; Immanuel Kant Baltic Federal University

Email: Andrey.savosenkov@gmail.com
Ресей, Nizhny Novgorod; Kaliningrad

Әдебиет тізімі

  1. Jiang L, Xu H, Yu C. Brain connectivity plasticity in the motor network after ischemic stroke. Neural plasticity. 2013;2013:924192. doi: 10.1155/2013/924192
  2. Gómez-Pinilla F, Ying Z, Roy RR, et al. Afferent input modulates neurotrophins and synaptic plasticity in the spinal cord. Journal of neurophysiology. 2004;92(6):3423–3432. doi: 10.1152/jn.00432.2004
  3. Lukoyanov MV, Gordleeva SYu, Pimashkin AS, et al. The Efficiency of the Brain-Computer Interfaces Based on Motor Imagery with Tactile and Visual Feedback. Human Physiology. 2018;44:280–288. doi: 10.1134/S0362119718030088
  4. Lukoyanov MV, Gordleeva SYu, Grigorev NA, et al. Investigation of Characteristics of a Motor-Imagery Brain-Computer Interface with Quick-Response Tactile Feedback. Moscow University Biological Sciences Bulletin. 2018;73:222–228. doi: 10.3103/S0096392518040053
  5. Grosse-Wentrup M, Mattia D, Oweiss K. Using brain-computer interfaces to induce neural plasticity and restore function. Journal of neural engineering. 2011;8(2):025004. doi: 10.1088/1741-2560/8/2/025004.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Eco-Vector, 2023

Creative Commons License
Бұл мақала лицензия бойынша қол жетімді Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».