Age-related immunophenotypic characteristics of perivascular mesenchymal stem cells in patients with heart defects
- 作者: Slesareva T.A.1,2, Uchasova E.G.1, Dyleva Y.A.1, Gorbatovskaya E.E.1,2, Belik E.V.1, Matveeva V.G.1, Torgunakova E.A.1, Dvadtsatov I.V.1, Khalipulo I.K.1, Tarasova O.L.2, Gruzdeva O.V.1,2
-
隶属关系:
- Research Institute for Complex Issues of Cardiovascular Diseases
- Kemerovo State Medical University
- 期: 卷 20, 编号 2 (2025)
- 页面: 141-151
- 栏目: Original Study Articles
- URL: https://journals.rcsi.science/2313-1829/article/view/310755
- DOI: https://doi.org/10.17816/gc643445
- EDN: https://elibrary.ru/HUVIMO
- ID: 310755
如何引用文章
详细
BACKGROUND: Currently, there are only a few studies evaluating the role of perivascular mesenchymal stem cells in the pathogenesis of cardiovascular diseases. Heart defects are a broad category of conditions affecting people of all ages. Therefore, biological characteristics of perivascular mesenchymal stem cells may be relevant to this area of research. The expression profile of surface markers is a key characteristic of cells that represents their functional state. This work evaluated and compared immunophenotypic characteristics of perivascular mesenchymal stem cells obtained from patients of different ages with heart defects of various non-inflammatory origins.
AIM: The study aimed to evaluate morphotypes and immunophenotypes of perivascular mesenchymal stem cells in pediatric and elderly patients with heart defects of various origins.
METHODS: The study included 16 patients of various ages with heart defects. Mesenchymal stem cells were isolated from perivascular adipose tissue and cultured. The levels of the following surface markers expressed by these cells were evaluated using flow cytofluorimetry for passages 2–4: CD90, CD105, CD73, CD34, and HLA-DR.
RESULTS: Only 47.97% of the cells in passage 2 in the pediatric group expressed specific surface markers. However, the number of cells showing a perivascular mesenchymal stem cell phenotype increased with each further passage (p = 0.0016). The subcultivation of perivascular mesenchymal stem cells obtained from older patients revealed that, in passage 2, 95.98% of the cells had specific surface markers, which decreased to 44.59% by passage 4 (p = 0.0016).
CONCLUSION: The expression of the study surface markers (CD90, CD105, CD73, CD34, HLA-DR) was less significant in perivascular mesenchymal stem cells obtained from older patients with non-inflammatory heart defects than in cells obtained from children with similar defects.
作者简介
Tamara Slesareva
Research Institute for Complex Issues of Cardiovascular Diseases; Kemerovo State Medical University
编辑信件的主要联系方式.
Email: soloveva081296@mail.ru
ORCID iD: 0000-0003-0749-4093
SPIN 代码: 2097-6785
俄罗斯联邦, Kemerovo; Kemerovo
Evgenia Uchasova
Research Institute for Complex Issues of Cardiovascular Diseases
Email: evg.uchasova@yandex.ru
ORCID iD: 0000-0003-4321-8977
SPIN 代码: 1539-5332
MD, Cand. Sci. (Medicine)
俄罗斯联邦, KemerovoYulia Dyleva
Research Institute for Complex Issues of Cardiovascular Diseases
Email: dyleva87@yandex.ru
ORCID iD: 0000-0002-6890-3287
SPIN 代码: 2064-6262
MD, Cand. Sci. (Medicine)
俄罗斯联邦, KemerovoEvgeniya Gorbatovskaya
Research Institute for Complex Issues of Cardiovascular Diseases; Kemerovo State Medical University
Email: eugenia.tarasowa@yandex.ru
ORCID iD: 0000-0002-0500-2449
SPIN 代码: 8247-9881
MD, Cand. Sci. (Medicine)
俄罗斯联邦, Kemerovo; KemerovoEkaterina Belik
Research Institute for Complex Issues of Cardiovascular Diseases
Email: sionina.ev@mail.ru
ORCID iD: 0000-0003-3996-3325
SPIN 代码: 5705-9143
MD, Cand. Sci. (Medicine)
俄罗斯联邦, KemerovoVera Matveeva
Research Institute for Complex Issues of Cardiovascular Diseases
Email: matveeva_vg@mail.ru
ORCID iD: 0000-0002-4146-3373
SPIN 代码: 9914-3705
MD, Cand. Sci. (Medicine)
俄罗斯联邦, KemerovoEvgeniya Torgunakova
Research Institute for Complex Issues of Cardiovascular Diseases
Email: tevgeniyatorgunakova@mail.ru
ORCID iD: 0009-0005-0683-991X
SPIN 代码: 6326-3427
俄罗斯联邦, Kemerovo
Ivan Dvadtsatov
Research Institute for Complex Issues of Cardiovascular Diseases
Email: dvadiv@kemcardio.ru
ORCID iD: 0000-0003-2243-1621
SPIN 代码: 4136-3280
MD, Cand. Sci. (Medicine)
俄罗斯联邦, KemerovoIvan Khalipulo
Research Institute for Complex Issues of Cardiovascular Diseases
Email: halivopulo@mail.ru
ORCID iD: 0000-0002-0661-4076
SPIN 代码: 4981-9218
MD, Cand. Sci. (Medicine)
俄罗斯联邦, KemerovoOlga Tarasova
Kemerovo State Medical University
Email: pathophysiology_kaf@mail.ru
ORCID iD: 0000-0002-7992-645X
SPIN 代码: 2969-2674
MD, Cand. Sci. (Medicine)
俄罗斯联邦, KemerovoOlga Gruzdeva
Research Institute for Complex Issues of Cardiovascular Diseases; Kemerovo State Medical University
Email: o_gruzdeva@mail.ru
ORCID iD: 0000-0002-7780-829X
SPIN 代码: 4322-0963
MD, Dr. Sci. (Medicine), Professor, Professor of the Russian Academy of Sciences
俄罗斯联邦, Kemerovo; Kemerovo参考
- Grigoras A, Amalinei C, Balan RA, et al. Perivascular adipose tissue in cardiovascular diseases — an update. Anatol J Cardiol. 2019;22(5):219–231. doi: 10.14744/AnatolJCardiol.2019.91380
- Gollasch M. Adipose-vascular coupling and potential therapeutics. Annu Rev Pharmacol Toxicol. 2017;57:417–436. doi: 10.1146/annurev-pharmtox-010716-104542
- Henrichot E, Juge-Aubry CE, Pernin A, et al. Production of chemokines by perivascular adipose tissue: a role in the pathogenesis of atherosclerosis? Arterioscler Thromb Vasc Biol. 2005;25(12):2594–2599. doi: 10.1161/01.ATV.0000188508.40052.35
- Gil-Ortega M, Somoza B, Huang Y, et al. Regional differences in perivascular adipose tissue impacting vascular homeostasis. Trends Endocrinol Metab. 2015;26(7):367–375. doi: 10.1016/j.tem.2015.04.003
- Cai M, Zhao D, Han X, et al. The role of perivascular adipose tissue-secreted adipocytokines in cardiovascular disease. Front Immunol. 2023;14:1271051. doi: 10.3389/fimmu.2023.1271051 EDN: RHPDXK
- Crisan M, Yap S, Casteilla L, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3(3):301–313. doi: 10.1016/j.stem.2008.07.003 EDN: LUIGDV
- Lin G, Garcia M, Ning H, et al. Defining stem and progenitor cells within adipose tissue. Stem Cells and Development. 2008;17(6):1053–1063. doi: 10.1089/scd.2008.0117
- Boytsov SA, Drapkina OM, Shlyakhto EV, et al. Epidemiology of cardiovascular diseases and their risk factors in regions of Russian Federation (ESSE-RF) Study. Ten years later. Cardiovascular Therapy and Prevention. 2021;20(5):143–152. doi: 10.15829/1728-8800-2021-3007 EDN: ZPGROP
- Truong NC, Bui KH, Van Pham P. Characterization of senescence of human adipose-derived stem cells after long-term expansion. Adv Exp Med Biol. 2019;1084:109–128. doi: 10.1007/5584_2018_235 EDN: JECGGK
- Zhou S, Greenberger JS, Epperly MW, et al. Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell. 2008;7(3):335–343. doi: 10.1111/j.1474-9726.2008.00377.x
- Li K, Shi G, Lei X, et al. Age-related alteration in characteristics, function, and transcription features of ADSCs. Stem Cell Res Ther. 2021;12(1):473. doi: 10.1186/s13287-021-02509-0 EDN: RZTHIQ
- Tan L, Liu X, Dou H, Hou Y. Characteristics and regulation of mesenchymal stem cell plasticity by the microenvironment — specific factors involved in the regulation of MSC plasticity. Genes Dis. 2020;9(2):296–309. doi: 10.1016/j.gendis.2020.10.006 EDN: CPEQLJ
- Yu B, Wang X, Song Y, et al. The role of hypoxia-inducible factors in cardiovascular diseases. Pharmacol Ther. 2022;238:108186. doi: 10.1016/j.pharmthera.2022.108186 EDN: KTZRGE
- Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–317. doi: 10.1080/14653240600855905
- Costa LA, Eiro N, Fraile M, et al. Functional heterogeneity of mesenchymal stem cells from natural niches to culture conditions: implications for further clinical uses. Cell Mol Life Sci. 2021;78(2):447–467. doi: 10.1007/s00018-020-03600-0 EDN: MDGGAJ
- Sibov TT, Severino P, Marti LC, et al. Mesenchymal stem cells from umbilical cord blood: parameters for isolation, characterization and adipogenic differentiation. Cytotechnology. 2012;64(5):511–521. doi: 10.1007/s10616-012-9428-3 EDN: RNYGNV
- Moraes DA, Sibov TT, Pavon LF, et al. A reduction in CD90 (THY-1) expression results in increased differentiation of mesenchymal stromal cells. Stem Cell Res Ther. 2016;7(1):97. doi: 10.1186/s13287-016-0359-3 EDN: CTMQAQ
- Zhu H, Mitsuhashi N, Klein A, et al. The role of the hyaluronan receptor CD44 in mesenchymal stem cell migration in the extracellular matrix. Stem Cells. 2006;24(4):928–935. doi: 10.1634/stemcells.2005-0186
- Jaganathan BG, Kumar A, Bhattacharyya J. CD90 expression in mesenchymal stem cells of the malignant niche. Experimental Hematology. 2015;43(9):S69. doi: 10.1016/j.exphem.2015.06.150
- Massaro F, Corrillon F, Stamatopoulos B, et al. Age-related changes in human bone marrow mesenchymal stromal cells: morphology, gene expression profile, immunomodulatory activity and miRNA expression. Front Immunol. 2023;14:1267550. doi: 10.3389/fimmu.2023.1267550 EDN: HBYSDN
- Levi B, Wan DC, Glotzbach JP, et al. CD105 protein depletion enhances human adipose-derived stromal cell osteogenesis through reduction of transforming growth factor β1 (TGF-β1) signaling. J Biol Chem. 2011;286(45):39497–39509. doi: 10.1074/jbc.M111.256529
- Petinati N, Kapranov N, Davydova Y, et al. Immunophenotypic characteristics of multipotent mesenchymal stromal cells that affect the efficacy of their use in the prevention of acute graft vs host disease. World J Stem Cells. 2020;12(11):1377–1395. doi: 10.4252/wjsc.v12.i11.1377 EDN: DOJDDV
- Wang X, Chen X, Xia D, et al. Adipose tissue hypoxia caused by cyanotic congenital heart disease and its impact on adipokine dysregulation. Int J Clin Exp Pathol. 2016;9(9):9148–9156.
- Minor M, Alcedo KP, Battaglia RA, Snider NT. Cell type- and tissue-specific functions of ecto-5’-nucleotidase (CD73). Am J Physiol Cell Physiol. 2019;317(6):C1079–C1092. doi: 10.1152/ajpcell.00285.2019 EDN: EXURLC
- Semenova E, Grudniak MP, Machaj EK, et al. Mesenchymal stromal cells from different parts of umbilical cord: approach to comparison & characteristics. Stem Cell Rev Rep. 2021;17(5):1780–1795. doi: 10.1007/s12015-021-10157-3 EDN: OVMHWE
- Kimura K, Breitbach M, Schildberg FA, et al. Bone marrow CD73+ mesenchymal stem cells display increased stemness in vitro and promote fracture healing in vivo. Bone Rep. 2021;15:101133. doi: 10.1016/j.bonr.2021.101133 EDN: NPGHSR
- Stenderup K, Justesen J, Clausen C, Kassem M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone. 2003;33(6):919–926. doi: 10.1016/j.bone.2003.07.005 EDN: EUOPSV
- Mareschi K, Ferrero I, Rustichelli D, et al. Expansion of mesenchymal stem cells isolated from pediatric and adult donor bone marrow. J Cell Biochem. 2006;97(4):744–754. doi: 10.1002/jcb.20681
- Saperova EV, Vahlova IV. Congenital heart diseases in children: incidence, risk factors, mortality. Current Pediatrics (Moscow). 2017;16(2):126–133. doi: 10.15690/vsp.v16i2.1713 EDN: YRGVRT
- Adan A, Eleyan L, Zaidi M, et al. Ventricular septal defect: diagnosis and treatments in the neonates: a systematic review. Cardiol Young. 2021;31(5):756–761. doi: 10.1017/S1047951120004576 EDN: BVRMFA
- Ladich E, Nakano M, Carter-Monroe N, Virmani R. Pathology of calcific aortic stenosis. Future Cardiol. 2011;7(5):629–642. doi: 10.2217/fca.11.53
- Aizenstadt AA, Enukashvili NI, Zolina TN, et al. Comparison of proliferation and immunophenotype of msc, obtainedfrom bone marrow, adipose tissue and umbilical cord. Herald of North-Western State Medical University Named After I.I. Mechnikov. 2015;7(2):14–22. EDN: UZAGDP
- Jones DL, Wagers AJ. No place like home: anatomy and function of the stem cell niche. Nat Rev Mol Cell Biol. 2008;9(1):11–21. doi: 10.1038/nrm2319
补充文件
