Evaluation of mitochondrial functional parameters of peripheral blood mononuclear cells in patients with chronic heart failure and type 2 diabetes mellitus
- Authors: Sveklina T.S.1, Shustov S.B.1, Kolyubaeva S.N.1, Kozlov V.A.2, Kuchmin A.N.1, Oktysyuk P.D.1, Konyaev V.V.1, Glushakov R.I.1
-
Affiliations:
- Military Medical Academy named after S.M. Kirov
- Chuvash State University
- Issue: Vol 19, No 4 (2024)
- Pages: 485-495
- Section: Original Study Articles
- URL: https://journals.rcsi.science/2313-1829/article/view/289676
- DOI: https://doi.org/10.17816/gc634093
- ID: 289676
Cite item
Abstract
BACKGROUND: The hypothesis that mitochondrial dysfunction may accompany development of chronic heart failure (CHF), type 2 diabetes mellitus (T2DM), and their comorbid forms is supported by real-world clinical observations. In patients with CHF with preserved ejection fraction (CHF-pEF) and reduced ejection fraction (CHF-rEF), as well as in patients with T2DM, mitochondrial stress test to assess mitochondrial respiration of peripheral blood mononuclear cells shows a significant decrease in oxygen consumption by mitochondria of peripheral blood mononuclear cells.
AIM: The aim of the study was to evaluate an informative value of the mitochondrial stress test in patients with CHF with T2DM.
MATERIALS AND METHODS: A total of 23 patients (mean age 69.8±10.1 years) with CHF-pEF and CHF-rEF were included. Patients were divided into groups according to the presence or absence of concomitant T2DM. A mitochondrial stress test was performed using the Seahorse XFe96 analyzer (Agilent Technologies, USA). Mitochondrial respiratory function was assessed in adherent mononuclear cells by simultaneous measurement of oxygen consumption and extracellular proton current flow.
RESULTS: In patients with T2DM, the basal respiratory capacity was reduced 1.5-fold and the reserve respiratory capacity was reduced 3.5-fold compared to the control group. The most inhibitory effect of T2DM on mitochondrial respiration was observed in the CHF-rEF group: 2.1 to 3.0 times lower compared to the control group. Concomitant T2DM was associated with a lower reserve respiration capacity which was also 2.4–4.5 times lower in patients with CHF alone and 18.0 times lower in patients with T2DM alone. In addition, T2DM patients showed a 1.28-fold suppression of non-mitochondrial respiration compared to the control group.
CONCLUSION: Significant mitochondrial dysfunction detected in comorbid patients is associated with the rapid clinical progression of CHF with T2DM and high incidence of decompensation. A decrease in basal and reserve respiratory capacity is a key factor in development of CHF in patients with T2DM.
Full Text
##article.viewOnOriginalSite##About the authors
Tatiana S. Sveklina
Military Medical Academy named after S.M. Kirov
Author for correspondence.
Email: Sveklinats@mail.ru
ORCID iD: 0000-0001-9546-7049
SPIN-code: 3561-6503
MD, Cand. Sci. (Medicine)
Russian Federation, 63a Suvorovsky avenue, 191124 Saint PetersburgSergey B. Shustov
Military Medical Academy named after S.M. Kirov
Email: sbs5555@mail.ru
ORCID iD: 0000-0002-9075-8274
SPIN-code: 5237-2036
MD, Dr. Sci. (Medicine)
Russian Federation, 63a Suvorovsky avenue, 191124 Saint PetersburgSvetlana N. Kolyubaeva
Military Medical Academy named after S.M. Kirov
Email: ksnwma@mail.ru
ORCID iD: 0000-0003-2441-9394
SPIN-code: 2077-2557
Dr. Sci. (Biology), Professor
Russian Federation, 63a Suvorovsky avenue, 191124 Saint PetersburgVadim A. Kozlov
Chuvash State University
Email: pooh12@yandex.ru
ORCID iD: 0000-0001-7488-1240
SPIN-code: 1915-5416
Dr. Sci. (Biology), MD, Dr. Sci. (Medicine), Professor
Russian Federation, CheboksaryAlexey N. Kuchmin
Military Medical Academy named after S.M. Kirov
Email: kuchmin.63@mail.ru
ORCID iD: 0000-0003-2888-9625
SPIN-code: 7787-1364
MD, Dr. Sci. (Medicine), Professor
Russian Federation, 63a Suvorovsky avenue, 191124 Saint PetersburgPolina D. Oktysyuk
Military Medical Academy named after S.M. Kirov
Email: polinaok99@gmail.com
ORCID iD: 0000-0003-1956-2110
SPIN-code: 7889-6129
Russian Federation, 63a Suvorovsky avenue, 191124 Saint Petersburg
Vladislav V. Konyaev
Military Medical Academy named after S.M. Kirov
Email: konyaevvladislav@yandex.ru
ORCID iD: 0000-0002-8347-2286
SPIN-code: 3002-5668
Russian Federation, 63a Suvorovsky avenue, 191124 Saint Petersburg
Ruslan I. Glushakov
Military Medical Academy named after S.M. Kirov
Email: glushakovruslan@gmail.com
ORCID iD: 0000-0002-0161-5977
SPIN-code: 6860-8990
MD, Dr. Sci. (Medicine)
Russian Federation, 63a Suvorovsky avenue, 191124 Saint PetersburgReferences
- Jirak P, Fejzic D, Paar V, et al. Influences of Ivabradine treatment on serum levels of cardiac biomarkers sST2, GDF-15, suPAR and H-FABP in patients with chronic heart failure. Acta Pharmacol Sin. 2018;39(7):1189–1196. doi: 10.1038/aps.2017.167
- Fox CS. Cardiovascular disease risk factors, type 2 diabetes mellitus, and the Framingham Heart Study. Trends Cardiovasc Med. 2010;20(3):90–95. doi: 10.1016/j.tcm.2010.08.001
- Kobalava ZD, Yeshniyazov NV, Medovchshikov VV, Khasanova ER. Type 2 diabetes mellitus and heart failure: innovative possibilities for management of prognosis. Kardiologiia. 2019;59(4):76–87. EDN: OLTUGV doi: 10.18087/cardio.2019.4.10253
- Kato T, Niizuma S, Inuzuka Y, et al. Analysis of metabolic remodeling in compensated left ventricular hypertrophy and heart failure. Circ Heart Fail. 2010;3(3):420–30. doi: 10.1161/CIRCHEARTFAILURE.109.888479
- Purwowiyoto SL, Prawara AS. Metabolic syndrome and heart failure: mechanism and management. Med Pharm Rep. 2021;94(1):15–21. doi: 10.15386/mpr-1884
- Ingwall JS, Weiss RG. Is the failing heart energy starved? On using chemical energy to support cardiac function. Circ Res. 2004;95:135–145. doi: 10.1161/01.RES.0000137170.41939.d9
- Knowlton AA, Chen L, Malik ZA. Heart failure and mitochondrial dysfunction: the role of mitochondrial fission/fusion abnormalities and new therapeutic strategies. J Cardiovasc Pharmacol. 2014;63(3):196–206. doi: 10.1097/01.fjc.0000432861.55968.a6
- Zhao L, Feng Z, Yang X, et al. The regulatory roles of O-GlcNAcylation in mitochondrial homeostasis and metabolic syndrome. Free Radic Res. 2016;50(10):1080–1088. doi: 10.1080/10715762.2016.1239017
- Gupte AA, Hamilton DJ. Mitochondrial function in non-ischemic heart failure. Adv Exp Med Biol. 2017;982:113–126. doi: 10.1007/978-3-319-55330-6_6
- Keceli G, Gupta A, Sourdon J, et al. Mitochondrial creatine kinase attenuates pathologic remodeling in heart failure. Circ Res. 2022;130(5):741–759. doi: 10.1161/CIRCRESAHA.121.319648
- Li AL, Lian L, Chen XN, et al. The role of mitochondria in myocardial damage caused by energy metabolism disorders: From mechanisms to therapeutics. Free Radic Biol Med. 2023;208:236–251. doi: 10.1016/j.freeradbiomed.2023.08.009
- Quiles JM, Gustafsson ÅB. The role of mitochondrial fission in cardiovascular health and disease. Nat Rev Cardiol. 2022;19(11):723–736. doi: 10.1038/s41569-022-00703-y
- Guo CA, Guo S. Insulin receptor substrate signaling controls cardiac energy metabolism and heart failure. J Endocrinol. 2017;233(3):R131–R143. doi: 10.1530/JOE-16-0679
- Kolwicz SC Jr, Purohit S, Tian R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ Res. 2013;113(5):603–616. doi: 10.1161/CIRCRESAHA.113.302095
- Julián MT, Pérez-Montes de Oca A, Julve J, Alonso N. The double burden: type 1 diabetes and heart failure-a comprehensive review. Cardiovasc Diabetol. 2024;23(1):65. doi: 10.1186/s12933-024-02136-y
- Bagriy AE, Suprun YeV, Mykhailichenko IS, Golodnikov IA. Heart failure and type 2 diabetes: current state of the problem. Russian Journal of Cardiology. 2020;25(4):79–85. EDN: LHZQHI doi: 10.15829/1560-4071-2020-3858
- Dabkowski ER, Baseler WA, Williamson CL, et al. Mitochondrial dysfunction in the type 2 diabetic heart is associated with alterations in spatially distinct mitochondrial proteomes. Am J Physiol Heart Circ Physiol. 2010;299(2):H529–H540. doi: 10.1152/ajpheart.00267.2010
- Chiu J, Farhangkhoee H, Xu BY, et al. PARP mediates structural alterations in diabetic cardiomyopathy. J Mol Cell Cardiol. 2008;45(3):385–393. doi: 10.1016/j.yjmcc.2008.06.009
- Tsvetkov VA, Krutikov ES, Chistyakova SI. Subclinical left ventricular dysfunction in patients with type 2 diabetes mellitus. Problems of Endocrinology. 2020;66(1):56–63. EDN: VUFURM doi: 10.14341/probl12359
- Shcherbatyuk OV, Tyrenko VV, Belevitin AB, Svistov AS. Brain natriuretic peptide — the genetic code of heart failure. Bulletin of the Russian Military Medical Academy. 2006;(2):100–107. (In Russ.) EDN: KWZOIZ
- Cocco G, Jerie P. Assessing the benefits of natriuretic peptides-guided therapy in chronic heart failure. Cardiol J. 2015;22(1):5–11. doi: 10.5603/CJ.a2014.0041
- Vasyuk YuA, Shupenina EYu, Namazova GA, Dubrovskaya TI. Novel algorithms for diagnosing heart failure with preserved ejection fraction in patients with hypertension and obesity. Cardiovascular Therapy and Prevention. 2021;20(1):65–69. EDN: VNLTTK doi: 10.15829/1728-8800-2021-2569
- Pagel P, Tawil J, Boettcher B, et al. Heart failure with preserved ejection fraction: a compre- hensive review and update of diagnosis, pathophysiology, treat ENT, and perioperative implications. J Cardiothorac Vasc Anesth. 2021;35(6):1839–1859. doi: 10.1053/j.jvca.2020.07.016
- Larina VN, Oynotkinova OSh, Larin VG, et al. Heart failure with preserved left ventricular ejection fraction: a comprehensive phenotype-based approach to diagnosis and treatment. Russian Journal of Cardiology and Cardiovascular Surgery. 2022;15(6):627–636. EDN: TQLABZ doi: 10.17116/kardio202215061627
- Mohebi R, Wang D, Lau ES, et al. Effect of 2022 ACC/AHA/HFSA criteria on stages of heart failure in a pooled community cohort. J Am Coll Cardiol. 2023;81(23):2231–2242. doi: 10.1016/j.jacc.2023.04.007 Erratum in: J Am Coll Cardiol. 2023;82(10):1051. doi: 10.1016/j.jacc.2023.07.009
- Golla MSG, Shams P. Heart failure with preserved ejection fraction (HFpEF). StatPearls. 2024.
- Grievink HW, Luisman T, Kluft C, et al. Comparison of three isolation techniques for human peripheral blood mononuclear cells: cell recovery and viability, population composition, and cell functionality. Biopreserv Biobank. 2016;14(5):410–415. doi: 10.1089/bio.2015.0104
- Kalantar GH, Saraswat S, SantaCruz-Calvo S, et al. Fasting and glucose metabolism differentially impact peripheral inflammation in human type 2 diabetes. Nutrients. 2024;16(10):1404. doi: 10.3390/nu16101404
- Tereshchenko SN, Galyavich AS, Uskach TM. et al. 2020 Clinical Practice Guidelines for Chronic Heart Failure. Russian Journal of Cardiology. 2020;25(11):311–374. EDN: LJGGQV doi: 10.15829/1560-4071-2020-4083
- Dedov II, Shestakova MV, Mayorov AYu, et al. Standards of specialized diabetes care / edited by Dedov I.I., Shestakova M.V., Mayorov A.Yu. 11th edition. Diabetes Mellitus. 2023;26(2S):1–157. EDN: DCKLCI doi: 10.14341/DM13042
- Altintas MM, DiBartolo S, Tadros L, et al. Metabolic changes in peripheral blood mononuclear cells isolated from patients with end stage renal disease. Front Endocrinol (Lausanne). 2021;12:629239. doi: 10.3389/fendo.2021.629239
- Connolly NMC, Theurey P, Adam-Vizi V, et al. Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases. Cell Death Differ. 2018;25(3):542–572. doi: 10.1038/s41418-017-0020-4
- Kubota M, Shui YB, Liu M, et al. Mitochondrial oxygen metabolism in primary human lens epithelial cells: Association with age, diabetes and glaucoma. Free Radic Biol Med. 2016;97:513–519. doi: 10.1016/j.freeradbiomed.2016.07.016
- Scott SR, Singh K, Yu Q, et al. Sex as biological variable in cardiac mitochondrial bioenergetic responses to acute stress. Int J Mol Sci. 2022;23(16):9312. doi: 10.3390/ijms23169312
- Divakaruni AS, Paradyse A, Ferrick DA, et al. Analysis and interpretation of microplate-based oxygen consumption and pH data. Methods Enzymol. 2014;547:309–354. doi: 10.1016/B978-0-12-801415-8.00016-3
- Masuzawa A, Black KM, Pacak CA, et al. Transplantation of autologously derived mitochondria protects the heart from ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2013;304(7):H966–H982. doi: 10.1152/ajpheart.00883.2012
- Ikeda G, Santoso MR, Tada Y, et al. Mitochondria-rich extracellular vesicles from autologous stem cell-derived cardiomyocytes restore energetics of ischemic myocardium. J Am Coll Cardiol. 2021;77(8):1073–1088. doi: 10.1016/j.jacc.2020.12.060
- Patent RUS No. 2818454 C1/04.06.2023. Byul. No. 13. Sveklina TS, Koliubaeva SN, Koniaev VV, et al. Method for assessing effectiveness of drug therapy in patients with chronic heart failure. Available from: https://fips.ru/registers-doc-view/fips_servlet?DB=RUPAT&DocNumber=2818454&TypeFile=html EDN: GFMFQC
- Lange M, Zeng Y, Knight A, et al. Comprehensive method for culturing embryonic dorsal root ganglion neurons for Seahorse Extracellular Flux XF24 analysis. Front Neurol. 2012;3:175. doi: 10.3389/fneur.2012.00175
- Hill BG, Benavides GA, Lancaster JR Jr, et al. Integration of cellular bioenergetics with mitochondrial quality control and autophagy. Biol Chem. 2012;393(12):1485–1512. doi: 10.1515/hsz-2012-0198
Supplementary files
