Molecular signaling of key neurotrophic factors in the brain while the occurrence of affective disorders
- Authors: Karabanov S.Y.1, Kibitkina A.A.1, Vasilevskaya E.R.1, Fedulova L.V.1
-
Affiliations:
- V.M. Gorbatov Federal Research Center for Food Systems
- Issue: Vol 19, No 3 (2024)
- Pages: 334-347
- Section: Reviews
- URL: https://journals.rcsi.science/2313-1829/article/view/273346
- DOI: https://doi.org/10.17816/gc631853
- ID: 273346
Cite item
Abstract
The COVID-19 pandemic and the increasingly tense political situation worldwide have led to an increase in the incidence of mood disorders. The occurrence of affective disorders is usually associated with neurotransmitters such as serotonin and dopamine; however, modern trends aim at studying the involvement of neurotrophic factors in the mechanisms of mood disorders.
This review aimed to summarize and systematize knowledge about key neurotrophic factors and the molecular mechanisms of their relationships.
The key metabolic mechanisms of proteins such as brain-derived neurotrophic factor, vascular endothelial growth factor, insulin-like growth factor-1, basic fibroblast growth factor-2, nerve growth factor, and glial cell-line derived neurotrophic factor are considered. Molecular pathways were analyzed, and a complex diagram of a multiple cascade with interconnected reactions was compiled, including each factor. Key molecular targets chosen included nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-kB) and cAMP response element-binding protein. The review also presented candidates for the role of limiting factors for these molecular targets. For the NF-kB cascade, neurotrophin receptor p75(NTR) was proposed as a limiting factor, and those for the CREB cascade were intracellular phospholipase C (PLC-γ), binary molecular switches (RAS-GTP), and protein kinase B (AKT).
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Sergey Yu. Karabanov
V.M. Gorbatov Federal Research Center for Food Systems
Author for correspondence.
Email: s.karabanov@fncps.ru
ORCID iD: 0000-0002-1688-4045
SPIN-code: 8046-1515
Scopus Author ID: 57219601857
Cand. Sci. (Veterinary)
Russian Federation, MoscowAnastasiya A. Kibitkina
V.M. Gorbatov Federal Research Center for Food Systems
Email: a.kibitkina@fncps.ru
ORCID iD: 0000-0001-6934-7342
SPIN-code: 7063-6360
Russian Federation, Moscow
Ekaterina R. Vasilevskaya
V.M. Gorbatov Federal Research Center for Food Systems
Email: e.vasilevskaya@fncps.ru
ORCID iD: 0000-0002-4752-3939
SPIN-code: 8668-7770
Cand. Sci. (Engineering)
Russian Federation, MoscowLiliya V. Fedulova
V.M. Gorbatov Federal Research Center for Food Systems
Email: l.fedulova@fncps.ru
ORCID iD: 0000-0003-3573-930X
SPIN-code: 4079-2394
Dr. Sci. (Engineering), Professor of the Russian Academy of Sciences
Russian Federation, MoscowReferences
- Sukhov AN. Socio-psychological analysis of the safety of various groups. Chelovek: prestuplenie i nakazanie. 2022;30(1):102–109. EDN: GRZXGP doi: 10.33463/2687-1238.2022.30(1-4).1.102-109
- Maksimov SA, Kotova MB, Gomanova LI, et al. Mental health of the russian federation population versus regional living conditions and individual income. Int J Environ Res Public Health. 2023;20(11):5973. doi: 10.3390/ijerph20115973
- World Health Organization Scientific [Internet]. Mental health and COVID-19: early evidence of the pandemic’s impact [cited 2024 April 24]. Available from: https://iris.who.int/bitstream/handle/10665/352189/WHO-2019-nCoV-Sci-Brief-Mental-health-2022.1-eng.pdf?sequence=1
- Sekhon S, Gupta V. Mood disorder. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023.
- Rădulescu I, Drăgoi AM, Trifu SC, Cristea MB. Neuroplasticity and depression: Rewiring the brain’s networks through pharmacological therapy (review). Exp Ther Med. 2021;22(4):1131. doi: 10.3892/etm.2021.10565
- Tunçel ÖK, Sarisoy G, Çetin E, et al. Neurotrophic factors in bipolar disorders patients with manic episode. Turk J Med Sci. 2020;50(4):985–993. doi: 10.3906/sag-1907-70
- Mattson MP, Maudsley S, Martin B. BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends Neurosci. 2004;27(10):589–594. doi: 10.1016/j.tins.2004.08.001
- Kashirskaya EI, Loginov PV, Mavlyutova EB. Neurotrophic factors in the regulation and diagnostics of neurodegenerative disorders. Astrakhan Medical Journal. 2020;15(1):48–57. EDN: ACBJAT doi: 10.17021/2020.15.1.48.57
- Wang Y, Liang J, Xu B, et al. TrkB/BDNF signaling pathway and its small molecular agonists in CNS injury. Life Sci. 2024;336:122282. doi: 10.1016/j.lfs.2023.122282
- Porter GA, O’Connor JC. Brain-derived neurotrophic factor and inflammation in depression: Pathogenic partners in crime? World J Psychiatry. 2022;12(1):77–97. doi: 10.5498/wjp.v12.i1.77
- Je HS, Yang F, Ji Y, et al. ProBDNF and mature BDNF as punishment and reward signals for synapse elimination at mouse neuromuscular junctions. J Neurosci. 2013;33(24):9957–9962. doi: 10.1523/JNEUROSCI.0163-13.2013
- Je HS, Yang F, Ji Y, et al. Role of pro-brain-derived neurotrophic factor (proBDNF) to mature BDNF conversion in activity-dependent competition at developing neuromuscular synapses. Proc Natl Acad Sci U S A. 2012;109(39):15924–15929. doi: 10.1073/pnas.1207767109
- Sathyanesan M, Newton SS. Antidepressant-like effects of trophic factor receptor signaling. Front Mol Neurosci. 2022;15:958797. doi: 10.3389/fnmol.2022.958797
- Correia AS, Cardoso A, Vale N. BDNF unveiled: exploring its role in major depression disorder serotonergic imbalance and associated stress conditions. Pharmaceutics. 2023;15(8):2081. doi: 10.3390/pharmaceutics15082081
- Numakawa T, Odaka H. Brain-derived neurotrophic factor signaling in the pathophysiology of Alzheimer’s disease: beneficial effects of flavonoids for Neuroprotection. Int J Mol Sci. 2021;22(11):5719. doi: 10.3390/ijms22115719
- Yu H, Chen ZY. The role of BDNF in depression on the basis of its location in the neural circuitry. Acta Pharmacol Sin. 2011;32(1):3–11. doi: 10.1038/aps.2010.184
- Yang T, Nie Z, Shu H, et al. The role of BDNF on neural plasticity in depression. Front Cell Neurosci. 2020;14:82. doi: 10.3389/fncel.2020.00082
- You H, Lu B. Diverse functions of multiple bdnf transcripts driven by distinct bdnf promoters. Biomolecules. 2023;13(4):655. doi: 10.3390/biom13040655
- Park CH, Kim J, Namgung E, et al. The BDNF Val66Met polymorphism affects the vulnerability of the brain structural network. Front Hum Neurosci. 2017;11:400. doi: 10.3389/fnhum.2017.00400
- Tan P, Xue T, Wang Y, et al. Hippocampal NR6A1 impairs CREB-BDNF signaling and leads to the development of depression-like behaviors in mice. Neuropharmacology. 2022;209:108990. doi: 10.1016/j.neuropharm.2022.108990
- Caviedes A, Lafourcade C, Soto C, Wyneken U. BDNF/NF-κB signaling in the neurobiology of depression. Curr Pharm Des. 2017;23(21):3154–3163. doi: 10.2174/1381612823666170111141915
- Zhivkovich M, Ermolaeva EV, Soboleva AV, et al. Brain neurotrophic factor BDNF: new data, functions and questions. Genes & cells. 2024;19(1):61–84. EDN: PSCYSM doi: 10.17816/gc623163
- Nowacka MM, Obuchowicz E. Vascular endothelial growth factor (VEGF) and its role in the central nervous system: a new element in the neurotrophic hypothesis of antidepressant drug action. Neuropeptides. 2012;46(1):1–10. doi: 10.1016/j.npep.2011.05.005
- Wang H, Yang Y, Pei G, et al. Neurotrophic basis to the pathogenesis of depression and phytotherapy. Front Pharmacol. 2023;14:1182666. doi: 10.3389/fphar.2023.1182666
- Borzilova YuA, Boldyreva LA, Shlyk IV. Vascular endothelial growth factors (VEGF): role in pathological processes. Russian Annals of Ophthalmology. 2016;132(4):98–103. EDN: WJZPQH doi: 10.17116/oftalma2016132498-103
- Shibuya M. Vascular endothelial growth factor receptor-1 (VEGFR-1/Flt-1): a dual regulator for angiogenesis. Angiogenesis. 2006;9(4):225–231. doi: 10.1007/s10456-006-9055-8
- Matsuno H, Tsuchimine S, O’Hashi K, et al. Association between vascular endothelial growth factor-mediated blood-brain barrier dysfunction and stress-induced depression. Mol Psychiatry. 2022;27(9):3822–3832. doi: 10.1038/s41380-022-01618-3
- Wallensten J, Mobarrez F, Åsberg M, et al. Isoforms of soluble vascular endothelial growth factor in stress-related mental disorders: a cross-sectional study. Sci Rep. 2021;11(1):16693. doi: 10.1038/s41598-021-96313-8 Corrected and republished from: Sci Rep. 2023;13(1):10210. doi: 10.1038/s41598-023-37259-x
- Maglio LE, Noriega-Prieto JA, Maroto IB, et al. IGF-1 facilitates extinction of conditioned fear. Elife. 2021;10:e67267. doi: 10.7554/eLife.67267
- Levada OA, Troyan AS, Pinchuk IY. Serum insulin-like growth factor-1 as a potential marker for MDD diagnosis, its clinical characteristics, and treatment efficacy validation: data from an open-label vortioxetine study. BMC Psychiatry. 2020;20(1):208. doi: 10.1186/s12888-020-02636-7
- Wang S, Hou K, Gui S, et al. Insulin-like growth factor 1 in heat stress-induced neuroinflammation: novel perspective about the neuroprotective role of chromium. Stress Biol. 2023;3(1):23. doi: 10.1007/s44154-023-00105-1
- Arjunan A, Sah DK, Woo M, Song J. Identification of the molecular mechanism of insulin-like growth factor-1 (IGF-1): a promising therapeutic target for neurodegenerative diseases associated with metabolic syndrome. Cell Biosci. 2023;13(1):16. doi: 10.1186/s13578-023-00966-z
- Sun LY, Al-Regaiey K, Masternak MM, et al. Local expression of GH and IGF-1 in the hippocampus of GHdeficient long-lived mice. Neurobiol Aging. 2005;26(6):929–937. doi: 10.1016/j.neurobiolaging.2004.07.010
- Duman CH, Schlesinger L, Terwilliger R, et al. Peripheral insulin-like growth factor-I produces antidepressant-like behavior and contributes to the effect of exercise. Behav Brain Res. 2009;198(2):366–371. doi: 10.1016/j.bbr.2008.11.016
- Levada OA, Troyan AS. Insulin-like growth factor-1: a possible marker for emotional and cognitive disturbances, and treatment effectiveness in major depressive disorder. Ann Gen Psychiatry. 2017;16:38. doi: 10.1186/s12991-017-0161-3
- Westwood AJ, Beiser A, Decarli C, et al. Insulin-like growth factor-1 and risk of Alzheimer dementia and brain atrophy. Neurology. 2014;82(18):1613–1619. doi: 10.1212/WNL.0000000000000382
- Kimoto A, Kasanuki K, Kumagai R, et al. Serum insulin-like growth factor-I and amyloid beta protein in Alzheimer’s disease: relationship with cognitive function. Psychogeriatrics. 2016;16(4):247–254. doi: 10.1111/psyg.12149
- Kim B, Elzinga SE, Henn R, et al. The effects of insulin and insulin-like growth factor I on amyloid precursor protein phosphorylation in in vitro and in vivo models of Alzheimer’s disease. Neurobiol Dis. 2019;132:104541. doi: 10.1016/j.nbd.2019.104541
- Deng Z, Deng S, Zhang MR, Tang MM. Fibroblast growth factors in depression. Front Pharmacol. 2019;10:60. doi: 10.3389/fphar.2019.00060
- Xu YH, Zhu Y, Zhu YY, et al. Abnormalities in FGF family members and their roles in modulating depression-related molecules. Eur J Neurosci. 2021;53(1):140–150. doi: 10.1111/ejn.14570
- Tang M, Cheng S, Wang L, et al. Decreased FGF19 and FGF21: possible underlying common pathogenic mechanism of metabolic and cognitive dysregulation in depression. Front Neurosci. 2023;17:1165443. doi: 10.3389/fnins.2023.1165443
- Tomé D, Dias MS, Correia J, Almeida RD. Fibroblast growth factor signaling in axons: from development to disease. Cell Commun Signal. 2023;21(1):290. doi: 10.1186/s12964-023-01284-0
- Xie Y, Su N, Yang J, et al. FGF/FGFR signaling in health and disease. Signal Transduct Target Ther. 2020;5(1):181. doi: 10.1038/s41392-020-00222-7
- Klimaschewski L, Claus P. Fibroblast growth factor signalling in the diseased nervous system. Mol Neurobiol. 2021;58(8):3884–3902. doi: 10.1007/s12035-021-02367-0
- Turner CA, Eren-Koçak E, Inui EG, et al. Dysregulated fibroblast growth factor (FGF) signaling in neurological and psychiatric disorders. Semin Cell Dev Biol. 2016;53:136–143. doi: 10.1016/j.semcdb.2015.10.003
- Evans SJ, Choudary PV, Neal CR, et al. Dysregulation of the fibroblast growth factor system in major depression. Proc Natl Acad Sci U S A. 2004;101(43):15506–15511. doi: 10.1073/pnas.0406788101
- Gaughran F, Payne J, Sedgwick PM, et al. Hippocampal FGF-2 and FGFR1 mRNA expression in major depression, schizophrenia and bipolar disorder. Brain Res Bull. 2006;70(3):221–227. doi: 10.1016/j.brainresbull.2006.04.008
- Goswami DB, Jernigan CS, Chandran A, et al. Gene expression analysis of novel genes in the prefrontal cortex of major depressive disorder subjects. Prog Neuropsychopharmacol Biol Psychiatry. 2013;43:126–133. doi: 10.1016/j.pnpbp.2012.12.010
- Levy MJF, Boulle F, Steinbusch HW, et al. Neurotrophic factors and neuroplasticity pathways in the pathophysiology and treatment of depression. Psychopharmacology (Berl). 2018;235(8):2195–2220. doi: 10.1007/s00213-018-4950-4
- Rocco ML, Soligo M, Manni L, Aloe L. Nerve growth factor: early studies and recent clinical trials. Curr Neuropharmacol. 2018;16(10):1455–1465. doi: 10.2174/1570159X16666180412092859
- Minnone G, De Benedetti F, Bracci-Laudiero L. NGF and its receptors in the regulation of inflammatory response. Int J Mol Sci. 2017;18(5):1028. doi: 10.3390/ijms18051028
- László A, Lénárt L, Illésy L, et al. The role of neurotrophins in psychopathology and cardiovascular diseases: psychosomatic connections. J Neural Transm (Vienna). 2019;126(3):265–278. doi: 10.1007/s00702-019-01973-6
- Skaper SD. Neurotrophic factors: an overview. Methods Mol Biol. 2018;1727:1–17. doi: 10.1007/978-1-4939-7571-6_1
- Snow WM, Albensi BC. Neuronal gene targets of NF-κB and their dysregulation in Alzheimer’s disease. Front Mol Neurosci. 2016;9:118. doi: 10.3389/fnmol.2016.00118
- Lim S, Moon M, Oh H, et al. Ginger improves cognitive function via NGF-induced ERK/CREB activation in the hippocampus of the mouse. J Nutr Biochem. 2014;25(10):1058–1065. doi: 10.1016/j.jnutbio.2014.05.009
- Kucharczyk M, Kurek A, Detka J, et al. Chronic mild stress influences nerve growth factor through a matrix metalloproteinase-dependent mechanism. Psychoneuroendocrinology. 2016;66:11–21. doi: 10.1016/j.psyneuen.2015.12.019
- Hellweg R, Ziegenhorn A, Heuser I, Deuschle M. Serum concentrations of nerve growth factor and brain-derived neurotrophic factor in depressed patients before and after antidepressant treatment. Pharmacopsychiatry. 2008;41(2):66–71. doi: 10.1055/s-2007-1004594
- Wiener CD, de Mello Ferreira S, Pedrotti Moreira F, et al. Serum levels of nerve growth factor (NGF) in patients with major depression disorder and suicide risk. J Affect Disord. 2015;184:245–248. doi: 10.1016/j.jad.2015.05.067
- Zhang Y, Jiang H, Yue Y, et al. The protein and mRNA expression levels of glial cell line-derived neurotrophic factor in post stroke depression and major depressive disorder. Sci Rep. 2017;7(1):8674. doi: 10.1038/s41598-017-09000-y
- Sharma AN, da Costa e Silva BF, Soares JC, et al. Role of trophic factors GDNF, IGF-1 and VEGF in major depressive disorder: A comprehensive review of human studies. J Affect Disord. 2016;197:9–20. doi: 10.1016/j.jad.2016.02.067
- Bahlakeh G, Rahbarghazi R, Mohammadnejad D, et al. Current knowledge and challenges associated with targeted delivery of neurotrophic factors into the central nervous system: focus on available approaches. Cell Biosci. 2021;11(1):181. doi: 10.1186/s13578-021-00694-2
- Shishkina TV, Vedunova MV, Mishchenko TA, Vedunova MV. The role of glial cell line-derived neurotrophic factor in the functioning of the nervous system (review). Modern Technologies in Medicine. 2015;7(4):211–220. EDN: VEEDON doi: 10.17691/stm2015.7.4.27
- Liu X, Li P, Ma X, et al. Association between plasma levels of BDNF and GDNF and the diagnosis, treatment response in first-episode MDD. J Affect Disord. 2022;315:190–197. doi: 10.1016/j.jad.2022.07.041
- Wang H, Yang Y, Pei G, Chen N. Neurotrophic basis to the pathogenesis of depression and phytotherapy. Front Pharmacol. 2023;14:1182666. doi: 10.3389/fphar.2023.1182666
- Zinchuk MS, Guekht AB, Druzhkova TA, et al. Glial cell line-derived neurotrophic factor (GDNF) in blood serum and lacrimal fluid of patients with a current depressive episode. J Affect Disord. 2022;318:409–413. doi: 10.1016/j.jad.2022.09.025
- Shi Y, Luan D, Song R, Zhang Z. Value of peripheral neurotrophin levels for the diagnosis of depression and response to treatment: A systematic review and meta-analysis. Eur Neuropsychopharmacol. 2020;41:40–51. doi: 10.1016/j.euroneuro.2020.09.633
Supplementary files
