Molecular signaling of key neurotrophic factors in the brain while the occurrence of affective disorders

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The COVID-19 pandemic and the increasingly tense political situation worldwide have led to an increase in the incidence of mood disorders. The occurrence of affective disorders is usually associated with neurotransmitters such as serotonin and dopamine; however, modern trends aim at studying the involvement of neurotrophic factors in the mechanisms of mood disorders.

This review aimed to summarize and systematize knowledge about key neurotrophic factors and the molecular mechanisms of their relationships.

The key metabolic mechanisms of proteins such as brain-derived neurotrophic factor, vascular endothelial growth factor, insulin-like growth factor-1, basic fibroblast growth factor-2, nerve growth factor, and glial cell-line derived neurotrophic factor are considered. Molecular pathways were analyzed, and a complex diagram of a multiple cascade with interconnected reactions was compiled, including each factor. Key molecular targets chosen included nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-kB) and cAMP response element-binding protein. The review also presented candidates for the role of limiting factors for these molecular targets. For the NF-kB cascade, neurotrophin receptor p75(NTR) was proposed as a limiting factor, and those for the CREB cascade were intracellular phospholipase C (PLC-γ), binary molecular switches (RAS-GTP), and protein kinase B (AKT).

About the authors

Sergey Yu. Karabanov

V.M. Gorbatov Federal Research Center for Food Systems

Author for correspondence.
Email: s.karabanov@fncps.ru
ORCID iD: 0000-0002-1688-4045
SPIN-code: 8046-1515
Scopus Author ID: 57219601857

Cand. Sci. (Veterinary)

Russian Federation, Moscow

Anastasiya A. Kibitkina

V.M. Gorbatov Federal Research Center for Food Systems

Email: a.kibitkina@fncps.ru
ORCID iD: 0000-0001-6934-7342
SPIN-code: 7063-6360
Russian Federation, Moscow

Ekaterina R. Vasilevskaya

V.M. Gorbatov Federal Research Center for Food Systems

Email: e.vasilevskaya@fncps.ru
ORCID iD: 0000-0002-4752-3939
SPIN-code: 8668-7770

Cand. Sci. (Engineering)

Russian Federation, Moscow

Liliya V. Fedulova

V.M. Gorbatov Federal Research Center for Food Systems

Email: l.fedulova@fncps.ru
ORCID iD: 0000-0003-3573-930X
SPIN-code: 4079-2394

Dr. Sci. (Engineering), Professor of the Russian Academy of Sciences

Russian Federation, Moscow

References

  1. Sukhov AN. Socio-psychological analysis of the safety of various groups. Chelovek: prestuplenie i nakazanie. 2022;30(1):102–109. EDN: GRZXGP doi: 10.33463/2687-1238.2022.30(1-4).1.102-109
  2. Maksimov SA, Kotova MB, Gomanova LI, et al. Mental health of the russian federation population versus regional living conditions and individual income. Int J Environ Res Public Health. 2023;20(11):5973. doi: 10.3390/ijerph20115973
  3. World Health Organization Scientific [Internet]. Mental health and COVID-19: early evidence of the pandemic’s impact [cited 2024 April 24]. Available from: https://iris.who.int/bitstream/handle/10665/352189/WHO-2019-nCoV-Sci-Brief-Mental-health-2022.1-eng.pdf?sequence=1
  4. Sekhon S, Gupta V. Mood disorder. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023.
  5. Rădulescu I, Drăgoi AM, Trifu SC, Cristea MB. Neuroplasticity and depression: Rewiring the brain’s networks through pharmacological therapy (review). Exp Ther Med. 2021;22(4):1131. doi: 10.3892/etm.2021.10565
  6. Tunçel ÖK, Sarisoy G, Çetin E, et al. Neurotrophic factors in bipolar disorders patients with manic episode. Turk J Med Sci. 2020;50(4):985–993. doi: 10.3906/sag-1907-70
  7. Mattson MP, Maudsley S, Martin B. BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends Neurosci. 2004;27(10):589–594. doi: 10.1016/j.tins.2004.08.001
  8. Kashirskaya EI, Loginov PV, Mavlyutova EB. Neurotrophic factors in the regulation and diagnostics of neurodegenerative disorders. Astrakhan Medical Journal. 2020;15(1):48–57. EDN: ACBJAT doi: 10.17021/2020.15.1.48.57
  9. Wang Y, Liang J, Xu B, et al. TrkB/BDNF signaling pathway and its small molecular agonists in CNS injury. Life Sci. 2024;336:122282. doi: 10.1016/j.lfs.2023.122282
  10. Porter GA, O’Connor JC. Brain-derived neurotrophic factor and inflammation in depression: Pathogenic partners in crime? World J Psychiatry. 2022;12(1):77–97. doi: 10.5498/wjp.v12.i1.77
  11. Je HS, Yang F, Ji Y, et al. ProBDNF and mature BDNF as punishment and reward signals for synapse elimination at mouse neuromuscular junctions. J Neurosci. 2013;33(24):9957–9962. doi: 10.1523/JNEUROSCI.0163-13.2013
  12. Je HS, Yang F, Ji Y, et al. Role of pro-brain-derived neurotrophic factor (proBDNF) to mature BDNF conversion in activity-dependent competition at developing neuromuscular synapses. Proc Natl Acad Sci U S A. 2012;109(39):15924–15929. doi: 10.1073/pnas.1207767109
  13. Sathyanesan M, Newton SS. Antidepressant-like effects of trophic factor receptor signaling. Front Mol Neurosci. 2022;15:958797. doi: 10.3389/fnmol.2022.958797
  14. Correia AS, Cardoso A, Vale N. BDNF unveiled: exploring its role in major depression disorder serotonergic imbalance and associated stress conditions. Pharmaceutics. 2023;15(8):2081. doi: 10.3390/pharmaceutics15082081
  15. Numakawa T, Odaka H. Brain-derived neurotrophic factor signaling in the pathophysiology of Alzheimer’s disease: beneficial effects of flavonoids for Neuroprotection. Int J Mol Sci. 2021;22(11):5719. doi: 10.3390/ijms22115719
  16. Yu H, Chen ZY. The role of BDNF in depression on the basis of its location in the neural circuitry. Acta Pharmacol Sin. 2011;32(1):3–11. doi: 10.1038/aps.2010.184
  17. Yang T, Nie Z, Shu H, et al. The role of BDNF on neural plasticity in depression. Front Cell Neurosci. 2020;14:82. doi: 10.3389/fncel.2020.00082
  18. You H, Lu B. Diverse functions of multiple bdnf transcripts driven by distinct bdnf promoters. Biomolecules. 2023;13(4):655. doi: 10.3390/biom13040655
  19. Park CH, Kim J, Namgung E, et al. The BDNF Val66Met polymorphism affects the vulnerability of the brain structural network. Front Hum Neurosci. 2017;11:400. doi: 10.3389/fnhum.2017.00400
  20. Tan P, Xue T, Wang Y, et al. Hippocampal NR6A1 impairs CREB-BDNF signaling and leads to the development of depression-like behaviors in mice. Neuropharmacology. 2022;209:108990. doi: 10.1016/j.neuropharm.2022.108990
  21. Caviedes A, Lafourcade C, Soto C, Wyneken U. BDNF/NF-κB signaling in the neurobiology of depression. Curr Pharm Des. 2017;23(21):3154–3163. doi: 10.2174/1381612823666170111141915
  22. Zhivkovich M, Ermolaeva EV, Soboleva AV, et al. Brain neurotrophic factor BDNF: new data, functions and questions. Genes & cells. 2024;19(1):61–84. EDN: PSCYSM doi: 10.17816/gc623163
  23. Nowacka MM, Obuchowicz E. Vascular endothelial growth factor (VEGF) and its role in the central nervous system: a new element in the neurotrophic hypothesis of antidepressant drug action. Neuropeptides. 2012;46(1):1–10. doi: 10.1016/j.npep.2011.05.005
  24. Wang H, Yang Y, Pei G, et al. Neurotrophic basis to the pathogenesis of depression and phytotherapy. Front Pharmacol. 2023;14:1182666. doi: 10.3389/fphar.2023.1182666
  25. Borzilova YuA, Boldyreva LA, Shlyk IV. Vascular endothelial growth factors (VEGF): role in pathological processes. Russian Annals of Ophthalmology. 2016;132(4):98–103. EDN: WJZPQH doi: 10.17116/oftalma2016132498-103
  26. Shibuya M. Vascular endothelial growth factor receptor-1 (VEGFR-1/Flt-1): a dual regulator for angiogenesis. Angiogenesis. 2006;9(4):225–231. doi: 10.1007/s10456-006-9055-8
  27. Matsuno H, Tsuchimine S, O’Hashi K, et al. Association between vascular endothelial growth factor-mediated blood-brain barrier dysfunction and stress-induced depression. Mol Psychiatry. 2022;27(9):3822–3832. doi: 10.1038/s41380-022-01618-3
  28. Wallensten J, Mobarrez F, Åsberg M, et al. Isoforms of soluble vascular endothelial growth factor in stress-related mental disorders: a cross-sectional study. Sci Rep. 2021;11(1):16693. doi: 10.1038/s41598-021-96313-8 Corrected and republished from: Sci Rep. 2023;13(1):10210. doi: 10.1038/s41598-023-37259-x
  29. Maglio LE, Noriega-Prieto JA, Maroto IB, et al. IGF-1 facilitates extinction of conditioned fear. Elife. 2021;10:e67267. doi: 10.7554/eLife.67267
  30. Levada OA, Troyan AS, Pinchuk IY. Serum insulin-like growth factor-1 as a potential marker for MDD diagnosis, its clinical characteristics, and treatment efficacy validation: data from an open-label vortioxetine study. BMC Psychiatry. 2020;20(1):208. doi: 10.1186/s12888-020-02636-7
  31. Wang S, Hou K, Gui S, et al. Insulin-like growth factor 1 in heat stress-induced neuroinflammation: novel perspective about the neuroprotective role of chromium. Stress Biol. 2023;3(1):23. doi: 10.1007/s44154-023-00105-1
  32. Arjunan A, Sah DK, Woo M, Song J. Identification of the molecular mechanism of insulin-like growth factor-1 (IGF-1): a promising therapeutic target for neurodegenerative diseases associated with metabolic syndrome. Cell Biosci. 2023;13(1):16. doi: 10.1186/s13578-023-00966-z
  33. Sun LY, Al-Regaiey K, Masternak MM, et al. Local expression of GH and IGF-1 in the hippocampus of GHdeficient long-lived mice. Neurobiol Aging. 2005;26(6):929–937. doi: 10.1016/j.neurobiolaging.2004.07.010
  34. Duman CH, Schlesinger L, Terwilliger R, et al. Peripheral insulin-like growth factor-I produces antidepressant-like behavior and contributes to the effect of exercise. Behav Brain Res. 2009;198(2):366–371. doi: 10.1016/j.bbr.2008.11.016
  35. Levada OA, Troyan AS. Insulin-like growth factor-1: a possible marker for emotional and cognitive disturbances, and treatment effectiveness in major depressive disorder. Ann Gen Psychiatry. 2017;16:38. doi: 10.1186/s12991-017-0161-3
  36. Westwood AJ, Beiser A, Decarli C, et al. Insulin-like growth factor-1 and risk of Alzheimer dementia and brain atrophy. Neurology. 2014;82(18):1613–1619. doi: 10.1212/WNL.0000000000000382
  37. Kimoto A, Kasanuki K, Kumagai R, et al. Serum insulin-like growth factor-I and amyloid beta protein in Alzheimer’s disease: relationship with cognitive function. Psychogeriatrics. 2016;16(4):247–254. doi: 10.1111/psyg.12149
  38. Kim B, Elzinga SE, Henn R, et al. The effects of insulin and insulin-like growth factor I on amyloid precursor protein phosphorylation in in vitro and in vivo models of Alzheimer’s disease. Neurobiol Dis. 2019;132:104541. doi: 10.1016/j.nbd.2019.104541
  39. Deng Z, Deng S, Zhang MR, Tang MM. Fibroblast growth factors in depression. Front Pharmacol. 2019;10:60. doi: 10.3389/fphar.2019.00060
  40. Xu YH, Zhu Y, Zhu YY, et al. Abnormalities in FGF family members and their roles in modulating depression-related molecules. Eur J Neurosci. 2021;53(1):140–150. doi: 10.1111/ejn.14570
  41. Tang M, Cheng S, Wang L, et al. Decreased FGF19 and FGF21: possible underlying common pathogenic mechanism of metabolic and cognitive dysregulation in depression. Front Neurosci. 2023;17:1165443. doi: 10.3389/fnins.2023.1165443
  42. Tomé D, Dias MS, Correia J, Almeida RD. Fibroblast growth factor signaling in axons: from development to disease. Cell Commun Signal. 2023;21(1):290. doi: 10.1186/s12964-023-01284-0
  43. Xie Y, Su N, Yang J, et al. FGF/FGFR signaling in health and disease. Signal Transduct Target Ther. 2020;5(1):181. doi: 10.1038/s41392-020-00222-7
  44. Klimaschewski L, Claus P. Fibroblast growth factor signalling in the diseased nervous system. Mol Neurobiol. 2021;58(8):3884–3902. doi: 10.1007/s12035-021-02367-0
  45. Turner CA, Eren-Koçak E, Inui EG, et al. Dysregulated fibroblast growth factor (FGF) signaling in neurological and psychiatric disorders. Semin Cell Dev Biol. 2016;53:136–143. doi: 10.1016/j.semcdb.2015.10.003
  46. Evans SJ, Choudary PV, Neal CR, et al. Dysregulation of the fibroblast growth factor system in major depression. Proc Natl Acad Sci U S A. 2004;101(43):15506–15511. doi: 10.1073/pnas.0406788101
  47. Gaughran F, Payne J, Sedgwick PM, et al. Hippocampal FGF-2 and FGFR1 mRNA expression in major depression, schizophrenia and bipolar disorder. Brain Res Bull. 2006;70(3):221–227. doi: 10.1016/j.brainresbull.2006.04.008
  48. Goswami DB, Jernigan CS, Chandran A, et al. Gene expression analysis of novel genes in the prefrontal cortex of major depressive disorder subjects. Prog Neuropsychopharmacol Biol Psychiatry. 2013;43:126–133. doi: 10.1016/j.pnpbp.2012.12.010
  49. Levy MJF, Boulle F, Steinbusch HW, et al. Neurotrophic factors and neuroplasticity pathways in the pathophysiology and treatment of depression. Psychopharmacology (Berl). 2018;235(8):2195–2220. doi: 10.1007/s00213-018-4950-4
  50. Rocco ML, Soligo M, Manni L, Aloe L. Nerve growth factor: early studies and recent clinical trials. Curr Neuropharmacol. 2018;16(10):1455–1465. doi: 10.2174/1570159X16666180412092859
  51. Minnone G, De Benedetti F, Bracci-Laudiero L. NGF and its receptors in the regulation of inflammatory response. Int J Mol Sci. 2017;18(5):1028. doi: 10.3390/ijms18051028
  52. László A, Lénárt L, Illésy L, et al. The role of neurotrophins in psychopathology and cardiovascular diseases: psychosomatic connections. J Neural Transm (Vienna). 2019;126(3):265–278. doi: 10.1007/s00702-019-01973-6
  53. Skaper SD. Neurotrophic factors: an overview. Methods Mol Biol. 2018;1727:1–17. doi: 10.1007/978-1-4939-7571-6_1
  54. Snow WM, Albensi BC. Neuronal gene targets of NF-κB and their dysregulation in Alzheimer’s disease. Front Mol Neurosci. 2016;9:118. doi: 10.3389/fnmol.2016.00118
  55. Lim S, Moon M, Oh H, et al. Ginger improves cognitive function via NGF-induced ERK/CREB activation in the hippocampus of the mouse. J Nutr Biochem. 2014;25(10):1058–1065. doi: 10.1016/j.jnutbio.2014.05.009
  56. Kucharczyk M, Kurek A, Detka J, et al. Chronic mild stress influences nerve growth factor through a matrix metalloproteinase-dependent mechanism. Psychoneuroendocrinology. 2016;66:11–21. doi: 10.1016/j.psyneuen.2015.12.019
  57. Hellweg R, Ziegenhorn A, Heuser I, Deuschle M. Serum concentrations of nerve growth factor and brain-derived neurotrophic factor in depressed patients before and after antidepressant treatment. Pharmacopsychiatry. 2008;41(2):66–71. doi: 10.1055/s-2007-1004594
  58. Wiener CD, de Mello Ferreira S, Pedrotti Moreira F, et al. Serum levels of nerve growth factor (NGF) in patients with major depression disorder and suicide risk. J Affect Disord. 2015;184:245–248. doi: 10.1016/j.jad.2015.05.067
  59. Zhang Y, Jiang H, Yue Y, et al. The protein and mRNA expression levels of glial cell line-derived neurotrophic factor in post stroke depression and major depressive disorder. Sci Rep. 2017;7(1):8674. doi: 10.1038/s41598-017-09000-y
  60. Sharma AN, da Costa e Silva BF, Soares JC, et al. Role of trophic factors GDNF, IGF-1 and VEGF in major depressive disorder: A comprehensive review of human studies. J Affect Disord. 2016;197:9–20. doi: 10.1016/j.jad.2016.02.067
  61. Bahlakeh G, Rahbarghazi R, Mohammadnejad D, et al. Current knowledge and challenges associated with targeted delivery of neurotrophic factors into the central nervous system: focus on available approaches. Cell Biosci. 2021;11(1):181. doi: 10.1186/s13578-021-00694-2
  62. Shishkina TV, Vedunova MV, Mishchenko TA, Vedunova MV. The role of glial cell line-derived neurotrophic factor in the functioning of the nervous system (review). Modern Technologies in Medicine. 2015;7(4):211–220. EDN: VEEDON doi: 10.17691/stm2015.7.4.27
  63. Liu X, Li P, Ma X, et al. Association between plasma levels of BDNF and GDNF and the diagnosis, treatment response in first-episode MDD. J Affect Disord. 2022;315:190–197. doi: 10.1016/j.jad.2022.07.041
  64. Wang H, Yang Y, Pei G, Chen N. Neurotrophic basis to the pathogenesis of depression and phytotherapy. Front Pharmacol. 2023;14:1182666. doi: 10.3389/fphar.2023.1182666
  65. Zinchuk MS, Guekht AB, Druzhkova TA, et al. Glial cell line-derived neurotrophic factor (GDNF) in blood serum and lacrimal fluid of patients with a current depressive episode. J Affect Disord. 2022;318:409–413. doi: 10.1016/j.jad.2022.09.025
  66. Shi Y, Luan D, Song R, Zhang Z. Value of peripheral neurotrophin levels for the diagnosis of depression and response to treatment: A systematic review and meta-analysis. Eur Neuropsychopharmacol. 2020;41:40–51. doi: 10.1016/j.euroneuro.2020.09.633

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Map of the molecular interactions of neurotrophic factors in affective disorders.

Download (1MB)

Copyright (c) 2024 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».