Extreme synchronization events in a model neuron-astrocyte network

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The examination of synchronization in neural networks is essential to comprehend how the brain functions in normal and pathological states. The synchronization of signals between groups of neurons is paramount for brain activity and associated with various brain functions, including memory, movement, sleep, and attention. However, a balance between synchronization and desynchronization must be maintained for proper brain function. During epilepsy, spontaneous transitions occur between two states of brain activity: synchronous and asynchronous. These transitions can be induced by various factors, including imbalances in chemical signals, changes in network activity, and other mechanisms that are not yet fully understood. Understanding these spontaneous transitions and the underlying mechanisms is a crucial aspect of epilepsy research. It will lead to the development of novel treatment approaches and strategies for inhibiting synchronized activity and averting seizure episodes.

A neuron-astrocyte network model was constructed in this study, which displayed spontaneous and induced transitions between asynchronous and synchronous states triggered by external stimuli. The network model utilized 1000 Izhikevich neurons [1] interconnected with excitatory synapses and organized according to a scale-free graph. Each neuron had a bidirectional interaction with a single astrocyte, resulting in a total of 1000 astrocytes in the network. The Ullah model [2] simulated intracellular calcium ion concentration dynamics in a single astrocyte. The action potential generated by a neuron causes the release of neurotransmitters into the synaptic cleft, which triggers the corresponding astrocyte to release calcium ions from its endoplasmic reticulum into the cytoplasm, generating a calcium impulse. The calcium pulse within the astrocyte led to the release of a gliotransmitter. This gliotransmitter has the potential to regulate the synaptic transmission efficiency of both presynaptic and postsynaptic terminals associated with the respective astrocyte. The study simulated the effect of astrocytic suppression on neurotransmitter release. The strength of the synaptic input connection to the neuron that interacts with the astrocyte decreased in proportion to the amplitude of the calcium pulse in the astrocyte.

Within the context of the implemented model study, we analyzed the global order parameter’s dependence on the maximum synaptic weight. Our bifurcation analysis showed the presence of hysteresis within a specific range of parameter values for connection weight maximums. In this range, the system under consideration is capable of displaying both synchronous and asynchronous regimes. However, an asynchronous regime was the only observed outcome below the lower boundary of the range, and only a synchronous regime was observed above the upper boundary. A statistical analysis was carried out on the duration of the model’s asynchronous states, specifically for the parameter value of the maximum synaptic weight near the upper boundary of the hysteresis region. The network dynamics were simulated for a prolonged period, and a histogram of the asynchronous state durations was plotted on a double logarithmic scale. The resulting data points were approximated using linear regression, which yielded a power-law exponent of –3/2.

Based on the obtained results, the neuron-astrocyte network can exhibit spontaneous transitions between two states: synchronous and asynchronous, similar to pathological processes in the brain. More precisely, the power-law exponent of –3/2 aligns with values discovered in experimental recordings of epileptic activity in rodent brains [3–5]. Detailed modeling of biophysical processes revealed the spontaneous emergence of global order in the network induced by noise. Astrocytic effects mediated the disruption of synchronization in the neural network by reducing the efficiency of synaptic transmission.

全文:

The examination of synchronization in neural networks is essential to comprehend how the brain functions in normal and pathological states. The synchronization of signals between groups of neurons is paramount for brain activity and associated with various brain functions, including memory, movement, sleep, and attention. However, a balance between synchronization and desynchronization must be maintained for proper brain function. During epilepsy, spontaneous transitions occur between two states of brain activity: synchronous and asynchronous. These transitions can be induced by various factors, including imbalances in chemical signals, changes in network activity, and other mechanisms that are not yet fully understood. Understanding these spontaneous transitions and the underlying mechanisms is a crucial aspect of epilepsy research. It will lead to the development of novel treatment approaches and strategies for inhibiting synchronized activity and averting seizure episodes.

A neuron-astrocyte network model was constructed in this study, which displayed spontaneous and induced transitions between asynchronous and synchronous states triggered by external stimuli. The network model utilized 1000 Izhikevich neurons [1] interconnected with excitatory synapses and organized according to a scale-free graph. Each neuron had a bidirectional interaction with a single astrocyte, resulting in a total of 1000 astrocytes in the network. The Ullah model [2] simulated intracellular calcium ion concentration dynamics in a single astrocyte. The action potential generated by a neuron causes the release of neurotransmitters into the synaptic cleft, which triggers the corresponding astrocyte to release calcium ions from its endoplasmic reticulum into the cytoplasm, generating a calcium impulse. The calcium pulse within the astrocyte led to the release of a gliotransmitter. This gliotransmitter has the potential to regulate the synaptic transmission efficiency of both presynaptic and postsynaptic terminals associated with the respective astrocyte. The study simulated the effect of astrocytic suppression on neurotransmitter release. The strength of the synaptic input connection to the neuron that interacts with the astrocyte decreased in proportion to the amplitude of the calcium pulse in the astrocyte.

Within the context of the implemented model study, we analyzed the global order parameter’s dependence on the maximum synaptic weight. Our bifurcation analysis showed the presence of hysteresis within a specific range of parameter values for connection weight maximums. In this range, the system under consideration is capable of displaying both synchronous and asynchronous regimes. However, an asynchronous regime was the only observed outcome below the lower boundary of the range, and only a synchronous regime was observed above the upper boundary. A statistical analysis was carried out on the duration of the model’s asynchronous states, specifically for the parameter value of the maximum synaptic weight near the upper boundary of the hysteresis region. The network dynamics were simulated for a prolonged period, and a histogram of the asynchronous state durations was plotted on a double logarithmic scale. The resulting data points were approximated using linear regression, which yielded a power-law exponent of –3/2.

Based on the obtained results, the neuron-astrocyte network can exhibit spontaneous transitions between two states: synchronous and asynchronous, similar to pathological processes in the brain. More precisely, the power-law exponent of –3/2 aligns with values discovered in experimental recordings of epileptic activity in rodent brains [3–5]. Detailed modeling of biophysical processes revealed the spontaneous emergence of global order in the network induced by noise. Astrocytic effects mediated the disruption of synchronization in the neural network by reducing the efficiency of synaptic transmission.

ADDITIONAL INFORMATION

Authors’ contribution. All authors made a substantial contribution to the conception of the work, acquisition, analysis, interpretation of data for the work, drafting and revising the work, final approval of the version to be published and agree to be accountable for all aspects of the work.

Funding sources. This work was supported by the Russian Science Foundation, grant No. 21-72-10129.

Competing interests. The authors declare that they have no competing interests.

×

作者简介

Yu. Tsybina

National Research Lobachevsky State University of Nizhny Novgorod

编辑信件的主要联系方式.
Email: lotarevaj@gmail.com
俄罗斯联邦, Nizhny Novgorod

I. Kastalskiy

National Research Lobachevsky State University of Nizhny Novgorod

Email: lotarevaj@gmail.com
俄罗斯联邦, Nizhny Novgorod

A. Andreev

National Research Lobachevsky State University of Nizhny Novgorod; Immanuel Kant Baltic Federal University

Email: lotarevaj@gmail.com
俄罗斯联邦, Nizhny Novgorod; Kaliningrad

N. Frolov

Immanuel Kant Baltic Federal University

Email: lotarevaj@gmail.com
俄罗斯联邦, Kaliningrad

A. Hramov

Immanuel Kant Baltic Federal University

Email: lotarevaj@gmail.com
俄罗斯联邦, Kaliningrad

S. Gordleeva

National Research Lobachevsky State University of Nizhny Novgorod; Immanuel Kant Baltic Federal University

Email: lotarevaj@gmail.com
俄罗斯联邦, Nizhny Novgorod; Kaliningrad

参考

  1. Izhikevich EM. Simple model of spiking neurons. IEEE Transactions on neural networks. 2003;14(6):1569–1572. doi: 10.1109/TNN.2003.820440
  2. Ullah G, Jung P, Cornell-Bell AH. Anti-phase calcium oscillations in astrocytes via inositol (1, 4, 5)-trisphosphate regeneration. Cell Calcium. 2006;39(3):197–208. doi: 10.1016/j.ceca.2005.10.009
  3. Sitnikova E, Hramov AE, Grubov VV, et al. On–off intermittency of thalamo-cortical oscillations in the electroencephalogram of rats with genetic predisposition to absence epilepsy. Brain Res. 2012;1436:147–156. doi: 10.1016/j.brainres.2011.12.006
  4. Koronovskii AA, Hramov AE, Grubov VV, et al. Coexistence of intermittencies in the neuronal network of the epileptic brain. Phys Rev E. 2016;93(3):032220. doi: 10.1103/PhysRevE.93.032220
  5. Frolov NS, Grubov VV, Maksimenko VA, et al. Statistical properties and predictability of extreme epileptic events. Sci Rep. 2019;9(1):7243. doi: 10.1038/s41598-019-43619-3

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2023

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».