Development of a model to study visual categorization learning in chickens (Gallus gallus domesticus)

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Categorization is a cognitive process that enables individuals to recognize similar yet distinct stimuli as equivalent [1–3]. To categorize an object, agents must identify key features of the new object by applying what they have learned from previous interactions with objects in that category [4]. Thus, categorization eliminates the need for the agent to repeatedly investigate each new object, thereby significantly expanding its adaptive capabilities. However, the nervous mechanisms that regulate this process are still not well understood. The primary aim of the present study is to establish an experimental behavioral model that will facilitate the investigation of the neurobiological mechanisms underlying visual categorization learning.

Chickens (Gallus gallus domesticus) were selected as a visual learning model. The study of categorization used the chickens’ innate tendency to peck at new small objects and remember their characteristics. For this purpose, a chick was placed in a cage that resembled a house cage with beads affixed to the floor. The “bead floor” consisted of more than 100 beads of different colors and food scattered throughout [5]. In the developed model, pecking solely on the beads was deemed inaccurate as opposed to pecking on the food. For training purposes, the chick was given 80 peckings and evaluated based on how many nibbles it used to create categories for “beads” vs. “food”. If the chick did not make at least 5 cues or was unable to make 80 cues within 10 minutes during the training session, it was excluded from the study.

First, the study investigated the effect of simultaneously presenting two new categories of “food” and “beads” on chicks’ behavior. The group that formed both “beads” and “new food” categories made more errors during the learning period, but performed as well as the group that only formed the “bead” category during the subsequent test. The study analyzed whether chicks could categorize objects (beads) of different sizes into a unified group. The chicks were trained with a floor of small beads and later tested with a different floor of larger beads. Results revealed that the chicks did not transfer their categorization ability from small to large beads. In the opposite scenario, where the chicks were presented with large beads during their training, and then offered small beads during the test, they refrained from pecking the smaller ones.

In the next stage, we examined how the object’s color affected the development of a novel category. The results showed that when the chicks were presented with the floor containing an additional color of beads, specifically yellow, they made the majority of errors while pecking the “new type of beads”. Then, the study evaluated whether the chicks could transition the classification of “beads” between color set № 1 (blue, pink, green, yellow, and black silver) and color set № 2 (light green, beige, blue, red, gold, and white), and vice versa. The findings indicate that the chickens do form the categories of “beads” in both versions of the task, and after training, do not peck at beads of the new color. Chickens are capable of categorizing “beads” and “food”, and can generalize within these categories.

Thus, this experimental study established the formation of categories in chickens during fast learning. Future application of the model will enable the investigation of the underlying neurobiological mechanisms in categorization learning.

全文:

Categorization is a cognitive process that enables individuals to recognize similar yet distinct stimuli as equivalent [1–3]. To categorize an object, agents must identify key features of the new object by applying what they have learned from previous interactions with objects in that category [4]. Thus, categorization eliminates the need for the agent to repeatedly investigate each new object, thereby significantly expanding its adaptive capabilities. However, the nervous mechanisms that regulate this process are still not well understood. The primary aim of the present study is to establish an experimental behavioral model that will facilitate the investigation of the neurobiological mechanisms underlying visual categorization learning.

Chickens (Gallus gallus domesticus) were selected as a visual learning model. The study of categorization used the chickens’ innate tendency to peck at new small objects and remember their characteristics. For this purpose, a chick was placed in a cage that resembled a house cage with beads affixed to the floor. The “bead floor” consisted of more than 100 beads of different colors and food scattered throughout [5]. In the developed model, pecking solely on the beads was deemed inaccurate as opposed to pecking on the food. For training purposes, the chick was given 80 peckings and evaluated based on how many nibbles it used to create categories for “beads” vs. “food”. If the chick did not make at least 5 cues or was unable to make 80 cues within 10 minutes during the training session, it was excluded from the study.

First, the study investigated the effect of simultaneously presenting two new categories of “food” and “beads” on chicks’ behavior. The group that formed both “beads” and “new food” categories made more errors during the learning period, but performed as well as the group that only formed the “bead” category during the subsequent test. The study analyzed whether chicks could categorize objects (beads) of different sizes into a unified group. The chicks were trained with a floor of small beads and later tested with a different floor of larger beads. Results revealed that the chicks did not transfer their categorization ability from small to large beads. In the opposite scenario, where the chicks were presented with large beads during their training, and then offered small beads during the test, they refrained from pecking the smaller ones.

In the next stage, we examined how the object’s color affected the development of a novel category. The results showed that when the chicks were presented with the floor containing an additional color of beads, specifically yellow, they made the majority of errors while pecking the “new type of beads”. Then, the study evaluated whether the chicks could transition the classification of “beads” between color set № 1 (blue, pink, green, yellow, and black silver) and color set № 2 (light green, beige, blue, red, gold, and white), and vice versa. The findings indicate that the chickens do form the categories of “beads” in both versions of the task, and after training, do not peck at beads of the new color. Chickens are capable of categorizing “beads” and “food”, and can generalize within these categories.

Thus, this experimental study established the formation of categories in chickens during fast learning. Future application of the model will enable the investigation of the underlying neurobiological mechanisms in categorization learning.

ADDITIONAL INFORMATION

Funding sources. The research was funded by a grant from the Non-commercial Foundation for the Advancement of Science and Education “Intellect”, with the support of the Lomonosov Moscow State University Interdisciplinary Scientific and Educational School “Brain, Cognitive Systems, Artificial Intelligence”.

×

作者简介

E. Diffine

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: diffinenok@gmail.com
俄罗斯联邦, Moscow

A. Tiunova

Institute of Normal Physiology named after P.K. Anokhin

Email: diffinenok@gmail.com
俄罗斯联邦, Moscow

K. Anokhin

Lomonosov Moscow State University; Institute of Normal Physiology named after P.K. Anokhin

Email: diffinenok@gmail.com
俄罗斯联邦, Moscow; Moscow

参考

  1. Edelman GM. Neural Darwinism: The Theory of Neuronal Group Selection. New York: BasicBooks; 1978:23–43. doi: 10.1126/science.240.4860.1802
  2. Herrnstein RJ. Levels of categorization. In Signal and sense. Local and global order in perceptual maps. New York: John Wiley and Sons Inc.; 1990:365–413.
  3. Huber L, Aust U. Mechanisms of perceptual categorization in birds. In: ten Cate C, Healy S, editors. Avian cognition. Cambridge University Press.; 2017:208–228. doi: 10.1017/9781316135976.012
  4. Medin DL. Concepts and conceptual structure. American Psychologist. 1989;44(12):1469–1481. doi: 10.1037/0003-066x.44.12.1469
  5. Tiunova AA, Anokhin KV, Rose SP. Two critical periods of protein and glycoprotein synthesis in memory consolidation for visual categorization learning in chicks. Learning & Memory. 1998;4(5):401–410. doi: 10.1101/lm.4.5.401

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2023

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».