Bursting activity in the reduced mean-field model of neuron-glial interaction

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The study of neural activity synchronization in the brain is a central focus of modern neurobiology and neurodynamics. In a healthy brain, cognitive functions necessitate the accurate integration of neural activity at specific spatiotemporal scales. Some neurological and psychiatric disorders exhibit observable variations in patterns of synchronous population activity. One of the most significant and compelling synchronous population activity patterns is the bursting activity that participates in various informational and physiological processes, including epilepsy. Several mathematical models have been proposed to explain the mechanisms of formation of the bursting activity. The most intriguing and scientifically sound models enable incorporation of astrocytic modulation of neural activity [1].

In this paper, we present a novel phenomenological model for accurately replicating the bursting neural population activity. Our model builds upon the Tsodyks-Markram [2] model and incorporates vital aspects of neuron-glial interaction through a tripartite synapse. The presented model is a simplified version of the previously proposed model [3]. During astrocyte activity (which lasts seconds), we can set the probability of neurotransmitter release, u, which is determined in fractions of a second. This enables the proposed model to be written in the following manner:

r=–E+α ln(1+exp((Ju(Y)xE+I0)/α)),

=(1–x)/τDu(Y)xE,

=–y/τY+βσy(X).

Here, E(t) represents the average neuronal activity of the excitatory population, while x(t) denotes the quantity of available neurotransmitter. Additionally, y(t) describes the concentration of gliotransmitters, which are released as a result of biochemical reactions during neuron-astrocyte interactions. The function describes the alteration in the likelihood of neurotransmitter release when gliotransmitters are present

u(y)=u0+(∆u0)/(1+exp(–50(yythr)).

Here u0 represents the probability of neurotransmitter release without astrocytic influence; ∆u0 indicates the change in the probability of neurotransmitter release caused by the interaction of the gliotransmitter with the presynaptic terminal, and ythr represents the threshold value that determines the change in the probability of neurotransmitter release due to the effect of a gliotransmitter. The function describes the influence of neurotransmitter on the concentration of the gliotransmitter

σy(x)=1/(1+exp(–20(xxthr)),

where xthr is the astrocyte activation threshold.

Note that the proposed model does not account for synaptic depression’s mechanism. Therefore, various dynamical regimes’ formation in the model is solely controlled by astrocytic dynamics.

In the study, control parameters I0 and u0 were selected while the remaining parameters were held constant. Specifically, τ=0.013, τD=0.08, α=1.58, J=3.07. Changes in the concentration of neurotransmitters and gliotransmitters were characterized by parameters ∆u0=0.305, τν=3.3, β=0.3, xxthr=0.75, ythr=0.4. The research was conducted using computer modeling and numerical methods in nonlinear dynamics.

The proposed model exhibits a diverse range of population activity patterns, such as spiking and bursting regular and chaotic activity. Chaotic dynamics zones are identified in the control parameter plane. An account is given of the mechanisms behind the emergence of these activity patterns through bifurcation analysis. It is shown that the occurrence of chaotic activity in the system can be associated both with the cascade of period doubling bifurcations and with the further development of chaos, as a result of which a homoclinic attractor appears in the system according to the Shilnikov scenario. It was also shown that multistability is observed in the system in a certain range of parameters.

Note that the emergence of multistability and bursting activity in the model is independent of the intricacy of neuron and glial cell dynamics. These dynamics are instead influenced by the feedback loop between the presynaptic neuron and the glial cell. The effects of neuron-like dynamics and neural-glial interaction demonstrated are generally applicable, without specifying particular characteristics of neural-glial interaction, network architecture, or single-cell neuron dynamics. It should be noted that our proposed model solely concerns the potentiation of synaptic transmission by astrocytes.

In summary, the proposed phenomenological model for population activity can replicate various patterns of neuron activity found in a wide range of dynamic memory and information processing studies. This research can potentially lead to the development of new, effective treatment methods for neurological diseases that involve neuron-glial interaction. Another potential application for these results is in the development of an optimized live chip that has preset functions. This requires a deeper understanding of rhythmogenesis in neural networks and brain function.

Full Text

The study of neural activity synchronization in the brain is a central focus of modern neurobiology and neurodynamics. In a healthy brain, cognitive functions necessitate the accurate integration of neural activity at specific spatiotemporal scales. Some neurological and psychiatric disorders exhibit observable variations in patterns of synchronous population activity. One of the most significant and compelling synchronous population activity patterns is the bursting activity that participates in various informational and physiological processes, including epilepsy. Several mathematical models have been proposed to explain the mechanisms of formation of the bursting activity. The most intriguing and scientifically sound models enable incorporation of astrocytic modulation of neural activity [1].

In this paper, we present a novel phenomenological model for accurately replicating the bursting neural population activity. Our model builds upon the Tsodyks-Markram [2] model and incorporates vital aspects of neuron-glial interaction through a tripartite synapse. The presented model is a simplified version of the previously proposed model [3]. During astrocyte activity (which lasts seconds), we can set the probability of neurotransmitter release, u, which is determined in fractions of a second. This enables the proposed model to be written in the following manner:

r=–E+α ln(1+exp((Ju(Y)xE+I0)/α)),

=(1–x)/τDu(Y)xE,

=–y/τY+βσy(X).

Here, E(t) represents the average neuronal activity of the excitatory population, while x(t) denotes the quantity of available neurotransmitter. Additionally, y(t) describes the concentration of gliotransmitters, which are released as a result of biochemical reactions during neuron-astrocyte interactions. The function describes the alteration in the likelihood of neurotransmitter release when gliotransmitters are present

u(y)=u0+(∆u0)/(1+exp(–50(yythr)).

Here u0 represents the probability of neurotransmitter release without astrocytic influence; ∆u0 indicates the change in the probability of neurotransmitter release caused by the interaction of the gliotransmitter with the presynaptic terminal, and ythr represents the threshold value that determines the change in the probability of neurotransmitter release due to the effect of a gliotransmitter. The function describes the influence of neurotransmitter on the concentration of the gliotransmitter

σy(x)=1/(1+exp(–20(xxthr)),

where xthr is the astrocyte activation threshold.

Note that the proposed model does not account for synaptic depression’s mechanism. Therefore, various dynamical regimes’ formation in the model is solely controlled by astrocytic dynamics.

In the study, control parameters I0 and u0 were selected while the remaining parameters were held constant. Specifically, τ=0.013, τD=0.08, α=1.58, J=3.07. Changes in the concentration of neurotransmitters and gliotransmitters were characterized by parameters ∆u0=0.305, τν=3.3, β=0.3, xxthr=0.75, ythr=0.4. The research was conducted using computer modeling and numerical methods in nonlinear dynamics.

The proposed model exhibits a diverse range of population activity patterns, such as spiking and bursting regular and chaotic activity. Chaotic dynamics zones are identified in the control parameter plane. An account is given of the mechanisms behind the emergence of these activity patterns through bifurcation analysis. It is shown that the occurrence of chaotic activity in the system can be associated both with the cascade of period doubling bifurcations and with the further development of chaos, as a result of which a homoclinic attractor appears in the system according to the Shilnikov scenario. It was also shown that multistability is observed in the system in a certain range of parameters.

Note that the emergence of multistability and bursting activity in the model is independent of the intricacy of neuron and glial cell dynamics. These dynamics are instead influenced by the feedback loop between the presynaptic neuron and the glial cell. The effects of neuron-like dynamics and neural-glial interaction demonstrated are generally applicable, without specifying particular characteristics of neural-glial interaction, network architecture, or single-cell neuron dynamics. It should be noted that our proposed model solely concerns the potentiation of synaptic transmission by astrocytes.

In summary, the proposed phenomenological model for population activity can replicate various patterns of neuron activity found in a wide range of dynamic memory and information processing studies. This research can potentially lead to the development of new, effective treatment methods for neurological diseases that involve neuron-glial interaction. Another potential application for these results is in the development of an optimized live chip that has preset functions. This requires a deeper understanding of rhythmogenesis in neural networks and brain function.

ADDITIONAL INFORMATION

Authors’ contribution. All authors made a substantial contribution to the conception of the work, acquisition, analysis, interpretation of data for the work, drafting and revising the work, final approval of the version to be published and agree to be accountable for all aspects of the work.

Funding sources. The study was supported by RSF grant No. 19-72-10128.

Competing interests. The authors declare that they have no competing interests.

×

About the authors

S. M. Olenin

National Research Lobachevsky State University of Nizhny Novgorod

Email: tatiana.levanova@itmm.unn.ru
Russian Federation, Nizhny Novgorod

T. A. Levanova

National Research Lobachevsky State University of Nizhny Novgorod

Author for correspondence.
Email: tatiana.levanova@itmm.unn.ru
Russian Federation, Nizhny Novgorod

S. V. Stasenko

National Research Lobachevsky State University of Nizhny Novgorod

Email: tatiana.levanova@itmm.unn.ru
Russian Federation, Nizhny Novgorod

References

  1. Lazarevich IA, Stasenko SV, Kazantsev VB. Synaptic multistability and network synchronization induced by the neuron–glial interaction in the brain. Jetp Lett. 2017;105:210–213. doi: 10.1134/S0021364017030092
  2. Tsodyks M, Pawelzik K, Markram H. Neural networks with dynamic synapses. Neural Comput. 1998;10(4):821–835. doi: 10.1162/089976698300017502
  3. Barabash N, Levanova T, Stasenko S. Rhythmogenesis in the mean field model of the neuron-glial network. Eur Phys J Spec Top. 2023;232:529–534. doi: 10.1140/epjs/s11734-023-00778-9

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».