Interhemispheric connectivity dynamics of brain activity indused by cortical spreading depolarization in rats

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Growing experimental and clinical evidence indicates the crucial role of network dysfunction in neurological disorders’ pathogenesis, including migraine, one of the most prevalent chronic brain diseases. Episodic headache attacks, frequently unilateral, accompanied by an aura, are associated with migraine. Migraine aura is a neurological condition characterized by the temporary development of unilateral sensory, motor, and/or speech disturbances. The symptoms are thought to indicate transient cerebral dysfunction in the cerebral cortex resulting from cortical spreading depolarization (SD), a wave of strong cellular depolarization that gradually spreads through the cortex at a rate of 3–5 mm/min. Electrophysiologically, the cortical SD wave is revealed by a high-amplitude slow negative shift in the extracellular potential and temporary suppression of the electrical activity of the cortex (EEG depression). The change in extracellular potential is associated with strong neuroglial depolarization and disruption of local ion homeostasis, which lasts for 1–2 min in healthy neuronal tissue. The SD results in a momentary suppression of the spontaneous electrical activity within the cortex, which is preceded by a brief excitation of the neurons.

The neurological symptoms of the aura suggest a unilateral impairment of interhemispheric interactions during the early phase of a migraine attack. Our study investigated the effect of unilateral SD (a probable pathophysiological mechanism of migraine aura) on interhemispheric functional communication in freely behaving rats using local field potentials of the visual and motor cortex. Two methods were used to examine connectivity: mutual information function, computed using the method proposed in [1], and phase synchronization, calculated through the method [2], for four frequency bands: delta (1–4 Hz), theta (4–10 Hz), beta (10–25 Hz), and gamma (25–50 Hz). This was done by performing calculations on non-overlapping twenty-second intervals. Functional connectivity evolution was analyzed using local field potential records collected from homotopic points of the motor and visual cortex of two hemispheres in freely moving rats after inducing a single unilateral cortical SD in the somatosensory cortex.

Cortical SD caused a significant wide-band decline (3–4 times) in interhemispheric functional connectivity in both the visual and motor cortex areas. Following the depolarization wave, the functional decoupling of the hemispheres began and progressively intensified, concluding by 5 min after the induction of the cortical SD wave. The network impairment displayed region- and frequency-specific features, with greater prominence observed in the visual cortex than in the motor cortex. The decline in functional connectivity was concurrent with abnormal animal behavior and aberrant activity in the ipsilateral cortex that appeared after the SD wave had ended.

The study indicated that unilateral SD leads to a reversible decline in the functional interhemispheric connectivity in the awake animal cortex. Given the crucial role of synchronizing cortical oscillations for processing sensory information and integrating sensorimotor functions, the intracortical functional interactions disruption resulting from a unilateral SD wave, which we discovered in our present study, could contribute to the neuropathological mechanisms of migraine aura and sensory processing dysfunction during a migraine attack.

全文:

Growing experimental and clinical evidence indicates the crucial role of network dysfunction in neurological disorders’ pathogenesis, including migraine, one of the most prevalent chronic brain diseases. Episodic headache attacks, frequently unilateral, accompanied by an aura, are associated with migraine. Migraine aura is a neurological condition characterized by the temporary development of unilateral sensory, motor, and/or speech disturbances. The symptoms are thought to indicate transient cerebral dysfunction in the cerebral cortex resulting from cortical spreading depolarization (SD), a wave of strong cellular depolarization that gradually spreads through the cortex at a rate of 3–5 mm/min. Electrophysiologically, the cortical SD wave is revealed by a high-amplitude slow negative shift in the extracellular potential and temporary suppression of the electrical activity of the cortex (EEG depression). The change in extracellular potential is associated with strong neuroglial depolarization and disruption of local ion homeostasis, which lasts for 1–2 min in healthy neuronal tissue. The SD results in a momentary suppression of the spontaneous electrical activity within the cortex, which is preceded by a brief excitation of the neurons.

The neurological symptoms of the aura suggest a unilateral impairment of interhemispheric interactions during the early phase of a migraine attack. Our study investigated the effect of unilateral SD (a probable pathophysiological mechanism of migraine aura) on interhemispheric functional communication in freely behaving rats using local field potentials of the visual and motor cortex. Two methods were used to examine connectivity: mutual information function, computed using the method proposed in [1], and phase synchronization, calculated through the method [2], for four frequency bands: delta (1–4 Hz), theta (4–10 Hz), beta (10–25 Hz), and gamma (25–50 Hz). This was done by performing calculations on non-overlapping twenty-second intervals. Functional connectivity evolution was analyzed using local field potential records collected from homotopic points of the motor and visual cortex of two hemispheres in freely moving rats after inducing a single unilateral cortical SD in the somatosensory cortex.

Cortical SD caused a significant wide-band decline (3–4 times) in interhemispheric functional connectivity in both the visual and motor cortex areas. Following the depolarization wave, the functional decoupling of the hemispheres began and progressively intensified, concluding by 5 min after the induction of the cortical SD wave. The network impairment displayed region- and frequency-specific features, with greater prominence observed in the visual cortex than in the motor cortex. The decline in functional connectivity was concurrent with abnormal animal behavior and aberrant activity in the ipsilateral cortex that appeared after the SD wave had ended.

The study indicated that unilateral SD leads to a reversible decline in the functional interhemispheric connectivity in the awake animal cortex. Given the crucial role of synchronizing cortical oscillations for processing sensory information and integrating sensorimotor functions, the intracortical functional interactions disruption resulting from a unilateral SD wave, which we discovered in our present study, could contribute to the neuropathological mechanisms of migraine aura and sensory processing dysfunction during a migraine attack.

ADDITIONAL INFORMATION

Authors’ contribution. All authors made a substantial contribution to the conception of the work, acquisition, analysis, interpretation of data for the work, drafting and revising the work, final approval of the version to be published and agree to be accountable for all aspects of the work.

Funding sources. This study was supported by the Russian Science Foundation, grant No. 22-15-00327.

Competing interests. The authors declare that they have no competing interests.

×

作者简介

T. Medvedeva

Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: medvedevatatiana@ihna.ru
俄罗斯联邦, Moscow

E. Suleymanova

Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences

Email: medvedevatatiana@ihna.ru
俄罗斯联邦, Moscow

L. Vinogradova

Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences

Email: medvedevatatiana@ihna.ru
俄罗斯联邦, Moscow

参考

  1. Kraskov A, Stögbauer H, Grassberger P. Estimating mutual information. Phys Rev E Stat Nonlin Soft Matter Phys. 2004;69(6 Pt 2):066138. Corrected and republished from: Phys Rev E Stat Nonlin Soft Matter Phys. 2011;83(1 Pt 1):019903. doi: 10.1103/PhysRevE.69.066138
  2. Mormann F, Lehnertz K, David P, Elger CE. Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D: Nonlinear Phenomena. 2000;144(3-4):358–369. doi: 10.1016/S0167-2789(00)00087-7

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2023

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».