Molecular targets for optogenetic stimulation of astrocytes for recovering cognitive functions in neurological complications

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Recently, mounting evidence suggests that cognitive impairment may accompany traditional neurological diseases, such as neurodegenerative disorders, as well as result from previous infections (COVID-19, influenza). One approach to mitigating the neurological pathological state involves regulating abnormal neural activity. Nevertheless, addressing this issue directly may not always be feasible due to neuronal overexcitation or inadequate stimulation, leading to unfavorable outcomes. Meanwhile, astrocytes adapt their activation levels exclusively to the group of neurons requiring activation, boosting cognitive functions as an example [1]. Optogenetics was employed in this study to selectively stimulate metabotropic astrocyte receptors in acute hippocampal slices of mice with an Alzheimer’s model. The aim was to examine the effect on electrophysiological function of neurons, strength of synaptic contacts ex vivo, and cognitive performance in vivo. Several fundamentally different approaches exist for optogenetic stimulation of cells, including the use of molecular targets such as ionotropic receptors (e.g., ChR2) or metabotropic receptors (e.g., OptoGq). Our studies have shown enhanced activity of hippocampal pyramidal neurons and potentiated field excitatory potentials (fEPSP) following optogenetic activation of astrocytes expressing the metabotropic construct OptoGq. Conversely, the use of ChR2 resulted in an opposite effect [2]. For this reason, all subsequent investigations used a metabotropic construct. Astrocytes are known to respond to external stimuli via intracellular calcium [Ca2+] waves. The propagation of this wave results in the release of D-serine, cytokines, and lactate, subsequently modulating the activity of neurons. The role of astrocytes in regulating the function of NMDA receptors by releasing or removing glutamate from the extracellular environment is critical in modulating neural network excitation. Given the association of astrocytes with the pathogenesis and pathological mechanisms involved in neurodegenerative disorders, controlling their activity becomes a pressing and indispensable aspect of therapy.

In the present investigation, optogenetic stimulation of hippocampal astrocytes transduced by AAV5_GfaABC1D_opto-a1AR-EYFP virus (which encodes a Gq-coupled metabotropic receptor) resulted in enhanced electrophysiological activity of hippocampal pyramidal neurons. This was evidenced by increased sEPSC of pyramidal neurons and the potentiation of field excitatory postsynaptic potentials (fEPSP) in the hippocampal region, following light activation of astrocytes [2]. A significant activation of early gene expression (cRel, Arc, Fos, JunB, and Egr1) was detected in hippocampal slices [3]. Additionally, optogenetic activation of the metabotropic receptor during behavioral tests in vivo restored cognitive functions in mice with an Alzheimer’s disease model.

The activation of the Gq-coupled metabotropic receptor was found to be a molecular target that promotes positive changes in neuronal functioning at ex vivo and in vivo levels in both wild type mice and a mouse model of Alzheimer’s disease. Expression of OPTO-α1AR in astrocytes could potentially have a beneficial impact on other neuropathological conditions. In the future, alternative less-invasive methods, such as chemogenetics, could be employed to specifically activate astrocytes in distinct brain regions.

全文:

Recently, mounting evidence suggests that cognitive impairment may accompany traditional neurological diseases, such as neurodegenerative disorders, as well as result from previous infections (COVID-19, influenza). One approach to mitigating the neurological pathological state involves regulating abnormal neural activity. Nevertheless, addressing this issue directly may not always be feasible due to neuronal overexcitation or inadequate stimulation, leading to unfavorable outcomes. Meanwhile, astrocytes adapt their activation levels exclusively to the group of neurons requiring activation, boosting cognitive functions as an example [1]. Optogenetics was employed in this study to selectively stimulate metabotropic astrocyte receptors in acute hippocampal slices of mice with an Alzheimer’s model. The aim was to examine the effect on electrophysiological function of neurons, strength of synaptic contacts ex vivo, and cognitive performance in vivo. Several fundamentally different approaches exist for optogenetic stimulation of cells, including the use of molecular targets such as ionotropic receptors (e.g., ChR2) or metabotropic receptors (e.g., OptoGq). Our studies have shown enhanced activity of hippocampal pyramidal neurons and potentiated field excitatory potentials (fEPSP) following optogenetic activation of astrocytes expressing the metabotropic construct OptoGq. Conversely, the use of ChR2 resulted in an opposite effect [2]. For this reason, all subsequent investigations used a metabotropic construct. Astrocytes are known to respond to external stimuli via intracellular calcium [Ca2+] waves. The propagation of this wave results in the release of D-serine, cytokines, and lactate, subsequently modulating the activity of neurons. The role of astrocytes in regulating the function of NMDA receptors by releasing or removing glutamate from the extracellular environment is critical in modulating neural network excitation. Given the association of astrocytes with the pathogenesis and pathological mechanisms involved in neurodegenerative disorders, controlling their activity becomes a pressing and indispensable aspect of therapy.

In the present investigation, optogenetic stimulation of hippocampal astrocytes transduced by AAV5_GfaABC1D_opto-a1AR-EYFP virus (which encodes a Gq-coupled metabotropic receptor) resulted in enhanced electrophysiological activity of hippocampal pyramidal neurons. This was evidenced by increased sEPSC of pyramidal neurons and the potentiation of field excitatory postsynaptic potentials (fEPSP) in the hippocampal region, following light activation of astrocytes [2]. A significant activation of early gene expression (cRel, Arc, Fos, JunB, and Egr1) was detected in hippocampal slices [3]. Additionally, optogenetic activation of the metabotropic receptor during behavioral tests in vivo restored cognitive functions in mice with an Alzheimer’s disease model.

The activation of the Gq-coupled metabotropic receptor was found to be a molecular target that promotes positive changes in neuronal functioning at ex vivo and in vivo levels in both wild type mice and a mouse model of Alzheimer’s disease. Expression of OPTO-α1AR in astrocytes could potentially have a beneficial impact on other neuropathological conditions. In the future, alternative less-invasive methods, such as chemogenetics, could be employed to specifically activate astrocytes in distinct brain regions.

ADDITIONAL INFORMATION

Authors’ contribution. All authors made a substantial contribution to the conception of the work, acquisition, analysis, interpretation of data for the work, drafting and revising the work, final approval of the version to be published and agree to be accountable for all aspects of the work.

Funding sources. This work was supported by a grant within the framework of the state assignment (FSEG-2023-0014).

Competing interests. The authors declare that they have no competing interests.

×

作者简介

E. Gerasimov

Peter the Great St. Petersburg Polytechnic University

Email: olvlasova@yandex.com
俄罗斯联邦, Saint Petersburg

A. Erofeev

Peter the Great St. Petersburg Polytechnic University

Email: olvlasova@yandex.com
俄罗斯联邦, Saint Petersburg

A. Bolshakova

Peter the Great St. Petersburg Polytechnic University

Email: olvlasova@yandex.com
俄罗斯联邦, Saint Petersburg

I. Bezprozvannyi

Peter the Great St. Petersburg Polytechnic University; University of Texas Southwestern Medical Center at Dallas

Email: olvlasova@yandex.com
俄罗斯联邦, Saint Petersburg; Dallas, United States

O. Vlasova

Peter the Great St. Petersburg Polytechnic University

编辑信件的主要联系方式.
Email: olvlasova@yandex.com
俄罗斯联邦, Saint Petersburg

参考

  1. Adamsky A, Kol A, Kreisel T, et al. Astrocytic activation generates de novo neuronal potentiation and memory enhancement. Cell. 2018;174(1):59–71.e14. doi: 10.1016/j.cell.2018.05.002
  2. Gerasimov E, Erofeev A, Borodinova A, et al. Optogenetic activation of astrocytes-effects on neuronal network function. Int J Mol Sci. 2021;22(17):9613. doi: 10.3390/ijms22179613
  3. Maltsev A, Roshchin M, Bezprozvanny I, et al. Bidirectional regulation by “star forces”: ionotropic astrocyte’s optical stimulation suppresses synaptic plasticity, metabotropic one strikes back. Hippocampus. 2023;33(1):18–36. doi: 10.1002/hipo.23486

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2023

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».