Effects of spreading depolarization induced by amygdala micro-injury on fear memory in rats

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Spreading depolarization (SD) is a wave of intense neuroglial depolarization that is widely recognized as a component of the acute brain response to various types of injury. Clinical studies conducted on patients with different types of stroke and traumatic brain injury which used intracranial recordings of cortical activity revealed a frequent incidence of cortical SD [1]. Site-specific intracerebral microinjections of drugs in experimental animals, or functional stereotactic surgery in patients, cause damage to both the neocortex and subcortical structures in the local area. Currently, most studies on SD are limited to the neocortex, but research shows that SD can be triggered in nearly all brain structures, albeit with varying levels of effectiveness [2]. The underlying mechanisms that render deep brain structures more vulnerable to SD remain unclear. Our recent research found that local injury to the amygdala can also lead to SD, although with a reduced likelihood compared to the neocortex [3]. The amygdala, a structure located in the temporal lobe, is highly susceptible to brain injury and plays a significant role in emotional behavior [4]. Specifically, it serves as a pivotal hub for fear memory and post-traumatic stress disorder pathogenesis. The post-injury neurobehavioral impairments are attributed to the limbic structure. Patients suffering from traumatic brain injury and stroke often exhibit cognitive dysfunction, generalized anxiety disorder, posttraumatic stress disorder, and other neuropsychiatric states. The role of SD in the pathogenesis of the behavioral deficit and its underlying mechanisms are not well understood.

In this study, we examined the impact of amygdala micro-injury and associated SD on fear memory in rats. Neuronal tissue damage was induced using the standard method of intracerebral injection of substances through a thin 30 G needle inserted into a guide cannula (23 G) previously implanted in the amygdala. We used the classical Pavlovian fear conditioning paradigm to assess animal behavior. Twenty-four hours following the acquisition of fear, fear memory was evaluated during the first test. An hour after the first test, bilateral microinjury of the amygdala was performed. The influence of amygdala microinjury on aversive memory was assessed during the second test 24 hours later. Following the second test, rats underwent a two-day fear extinction process one to two days later.

We found that bilateral micro-injury to the amygdala resulted in bilateral SD, unilateral SD, or no SD. Neither the injury nor the SD induced significant changes in fear conditioning during test 2, but they did affect subsequent fear extinction. The effect depended on whether the SD was triggered by the injury. If no SD occurred, fear extinction was disrupted, and rats exhibited high levels of freezing in response to sound. However, if bilateral SD was triggered by amygdala damage, fear memory was extinguished successfully and rapidly. The results of the present study suggest a strong involvement of SD induced by amygdala micro-injury in fear memory extinction.

This information is crucial in comprehending the fundamental mechanisms behind post-traumatic stress disorder and exploring novel therapeutic approaches for treating this condition. The discoveries could be valuable in designing and interpreting experiments that involve local intracerebral microinjection.

Texto integral

Spreading depolarization (SD) is a wave of intense neuroglial depolarization that is widely recognized as a component of the acute brain response to various types of injury. Clinical studies conducted on patients with different types of stroke and traumatic brain injury which used intracranial recordings of cortical activity revealed a frequent incidence of cortical SD [1]. Site-specific intracerebral microinjections of drugs in experimental animals, or functional stereotactic surgery in patients, cause damage to both the neocortex and subcortical structures in the local area. Currently, most studies on SD are limited to the neocortex, but research shows that SD can be triggered in nearly all brain structures, albeit with varying levels of effectiveness [2]. The underlying mechanisms that render deep brain structures more vulnerable to SD remain unclear. Our recent research found that local injury to the amygdala can also lead to SD, although with a reduced likelihood compared to the neocortex [3]. The amygdala, a structure located in the temporal lobe, is highly susceptible to brain injury and plays a significant role in emotional behavior [4]. Specifically, it serves as a pivotal hub for fear memory and post-traumatic stress disorder pathogenesis. The post-injury neurobehavioral impairments are attributed to the limbic structure. Patients suffering from traumatic brain injury and stroke often exhibit cognitive dysfunction, generalized anxiety disorder, posttraumatic stress disorder, and other neuropsychiatric states. The role of SD in the pathogenesis of the behavioral deficit and its underlying mechanisms are not well understood.

In this study, we examined the impact of amygdala micro-injury and associated SD on fear memory in rats. Neuronal tissue damage was induced using the standard method of intracerebral injection of substances through a thin 30 G needle inserted into a guide cannula (23 G) previously implanted in the amygdala. We used the classical Pavlovian fear conditioning paradigm to assess animal behavior. Twenty-four hours following the acquisition of fear, fear memory was evaluated during the first test. An hour after the first test, bilateral microinjury of the amygdala was performed. The influence of amygdala microinjury on aversive memory was assessed during the second test 24 hours later. Following the second test, rats underwent a two-day fear extinction process one to two days later.

We found that bilateral micro-injury to the amygdala resulted in bilateral SD, unilateral SD, or no SD. Neither the injury nor the SD induced significant changes in fear conditioning during test 2, but they did affect subsequent fear extinction. The effect depended on whether the SD was triggered by the injury. If no SD occurred, fear extinction was disrupted, and rats exhibited high levels of freezing in response to sound. However, if bilateral SD was triggered by amygdala damage, fear memory was extinguished successfully and rapidly. The results of the present study suggest a strong involvement of SD induced by amygdala micro-injury in fear memory extinction.

This information is crucial in comprehending the fundamental mechanisms behind post-traumatic stress disorder and exploring novel therapeutic approaches for treating this condition. The discoveries could be valuable in designing and interpreting experiments that involve local intracerebral microinjection.

ADDITIONAL INFORMATION

Funding sources. This work was supported by Russian Science Foundation (grant No. 22-15-00327).

×

Sobre autores

M. Smirnova

Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences

Autor responsável pela correspondência
Email: rymarik@gmail.com
Rússia, Moscow

I. Pavlova

Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences

Email: rymarik@gmail.com
Rússia, Moscow

L. Vinogradova

Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences

Email: rymarik@gmail.com
Rússia, Moscow

Bibliografia

  1. Lauritzen M, Strong AJ. ‘Spreading depression of Leão’ and its emerging relevance to acute brain injury in humans. Journal of Cerebral Blood Flow & Metabolism. 2017;37(5):1553–1570. doi: 10.1177/0271678X16657092
  2. Andrew RD, Hartings JA, Ayata C, et al. The Critical Role of Spreading Depolarizations in Early Brain Injury: Consensus and Contention. Neurocritical Care. 2022;37(Suppl 1):83–101. doi: 10.1007/s12028-021-01431-w
  3. Vinogradova LV, Rysakova MP, Pavlova IV. Small damage of brain parenchyma reliably triggers spreading depolarization. Neurological Research. 2020;42(1):76–82. doi: 10.1080/01616412.2019.1709745
  4. Gafford G, Ressler K. Mouse models of fear-related disorders: Cell-type-specific manipulations in amygdala. Neuroscience. 2016;321:108–120. doi: 10.1016/j.neuroscience.2015.06.019

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Eco-Vector, 2023

Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição–NãoComercial–SemDerivações 4.0 Internacional.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».